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Introduction

Silent information regulator 2 (SIR2) proteins are a family 
of class III histone deacetylases that are highly conserved 
in mammalian species. Seven subtypes (sirtuin1–7) have 
been identified (1-3). Among them, sirtuin1 (SIRT1) is 
highly expressed in mammalian hearts and can regulate a 
wide variety of cellular processes such as apoptosis, survival, 

DNA repair, and metabolism (4-6). Previous studies 
reported that SIRT1 can protect the myocardium through 
multiple pathways (7-9). The mitochondrial pathway has 
been widely examined. These studies indicated that SIRT1 
can promote the anti-apoptotic effect of the mitochondria 
in myocardial cells by regulating the permeability, synthesis, 
and morphology of mitochondria (7-10). Decreased SIRT1 
levels may have adverse effects on the myocardium such as 
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increased myocardial oxidative stress (11). Previous studies 
also showed that SIRT1 was significantly reduced in patients 
with heart failure (11,12). These studies indirectly suggest 
that SIRT1 has protective effects on the myocardium, which 
may affect thyroid hormones. 

Thyroid hormone is secreted by the thyroid gland, 
has been confirmed to play a crucial role in regulating 
myocardial metabolism, and is related to the myocardium 
and SIRT1 (13). Thyroxine can inhibit cardiomyocyte 
apoptosis, particularly in patients with ischemia-reperfusion 
injury, and thyroid hormones exert their protection effects 
mainly through the mitochondria (14). Previous studies 
showed that the levels of circulating thyroid hormones are 
decreased in patients with acute myocardial infarction (15) 
and pretreatment with thyroid hormones significantly 
alleviates myocardial ischemia-reperfusion injury (14). 
Therefore, appropriate thyroxine levels may have protective 
effects on the myocardium, and low thyroxine levels do not 
contribute to myocardial viability. However, studies found 
that hypothyroidism (HT) levels are high in patients with 
clinical coronary heart disease (16) and can lead to various 
disorders such as cardiac dysfunction and heart failure (17). 
Recently published clinical studies have suggested that HT 
is associated with increased all-cause and cardiovascular 
mortality (18). In addition, decreased thyroxine and SIRT1 
are harmful to the myocardium. 

The effect of HT on SIRT1 content in myocardial cells 
remains unknown. Therefore, the purpose of this study was 
to determine the effects of HT on the content of SIRT1 in 
myocardial cells of rats.

Methods

Animals and treatments

We used 20 6-week-old (adults) male Wistar rats with body 
weights (BWs) of 180–200 g. All rats were obtained from 
the Animal Center of the Academy of Military Medical 
Sciences (Beijing, China). All studies were conducted in 
accordance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals published by 
the US National Institutes of Health (NIH, publication 
number 85-23, revised 1996, http://grants.nih.gov/grants/
olaw/olaw.htm). All protocols were approved by the Animal 
Subjects Committee of the Academy of Military Medical 
Sciences, Beijing, China, and the study was approved the 
Ethics committee of The Second People’s Hospital of 
Yichang. Hypothyroid rats were prepared according to a 

previous study (19). Briefly, the rats were housed in cages 
and maintained at 22–24 ℃ with a normal 12-h/12-h light-
dark cycle. The rats had free access to chow and water. 
The rats were randomly divided into control groups or HT 
groups to receive the diet and the following drug regimens 
for 8 weeks: (I) control groups (n=10): 0.9% sodium 
chloride solution was administered via gavage at 1 mL/day; 
(II) HT groups (n=10): 0.05% PTU saline solution was 
administered via gavage at 1 mL/day.

Measure of triiodothyronine (TT3), tetraiodothyronine 
(TT4) and thyroid-stimulating hormone (TSH)

We obtained blood samples (1 mL) from the femoral artery 
of rats before intervention to measure the baseline levels of 
TT3, TT4, and TSH. The rats were weighed using standard 
methods and then euthanized by cervical dislocation after 
receiving intervention for 8 weeks. We collected blood 
samples (1 mL) from each rat by cardiac puncture after 
opening the chest. These blood samples were centrifuged 
at 12,000 rpm and 4 ℃ for 10 min. The supernatant was 
collected to determine TT3, TT4, and TSH levels using 
commercial RIA kits (BNIBT, A01TFB for TT3, A02TFB 
for TT4, A05FZB for TSH, Beijing, China) in accordance 
with the manufacturer instructions. 

Protein extract and measurement

After 8 weeks of intervention, blood samples were collected 
and the heart was excised immediately. The hearts were rinsed 
with cold (4 ℃) normal saline, dried with filter paper, and 
measured to determine the heart weight (HW) index (HWI, 
HW/BW). Next, the left ventricular tissue was isolated, 
placed on ice immediately, and homogenized in radio-
immunoprecipitation assay lysis buffer (CWbio, Beijing, 
China). Total protein in the supernatant was extracted from 
the homogenate by centrifugation (12,000 rpm, 4 ℃, 10 min). 
Quantification of total protein was conducted using the 
BCA method with a BCA Kit (Takara, Shiga, Japan).

Western blot analysis to determine relative SIRT1 content

For direct immunoblotting, aliquots of the lysate were mixed 
with 5× SDS-PAGE sample loading buffer (containing 
5% 2-mercaptoethanol) and boiled for 10 min. The 
same amounts of proteins (60 μg) were loaded into 10% 
acrylamide gels and then transferred onto a polyvinylidene 
fluoride (PVDF) membrane (Millipore, Billerica, MA, 
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USA). The PVDF membranes were blocked with 8% nonfat 
milk in Tris-buffered saline containing 0.1% (v/v) Tween 20 
(TBST) for 1 h at room temperature (about 25 ℃) and then 
incubated overnight with an anti-SIRT1 antibody (1:8,000, 
ab110304; Abcam, Cambridge, UK) and anti-β-actin 
(1:1,000, ab8226; Abcam) at 4 ℃. The PVDF membranes 
were washed extensively with TBST before incubation 
for 1 h with a secondary anti-mouse or anti-rabbit IgG 
(1:1,000, Cell Signaling Technology, Inc., Danvers, MA, 
USA) conjugated to horseradish peroxidase. Protein bands 
were detected by the standard enhanced chemiluminescence 
method, and images were digitized. Next, relative band 
intensities were measured by densitometry using Image Lab 
software version 4.1.0 (Bio-Rad, Hercules, CA, USA).

Statistical analysis

All data were analyzed with SPSS16.0 (SPSS, Inc., Chicago, 
IL, USA). Data from independent experiments were 
expressed as the mean ± SD of at least three experiments. 
Differences of continuous variables between the two 
groups were compared by analysis of variance with repeated 
measures and the paired t-test was used to compare 
differences before and after intervention. The Spearman 
approach was used to analyze the correlation. P<0.05 was 
considered statistically significant.

Results

Effects of PTU on thyroid function in rats

PTU has a significant effect on the thyroid function of 
rats. No statistical differences were found between the 
two groups in TT3, TT4, and TSH before intervention. 
After intervention for 8 weeks, serum TT3 and TT4 

concentrations were significantly lower than those 
before intervention and in the control groups (P<0.05), 
while serum TSH levels were higher than those before 
intervention and in the control groups (P<0.05) (Figure 1).

Effects of PTU on body and HW of rats

At baseline, BW was not significantly different between 
the HT groups and control groups (P>0.05) (Figure 2). HT 
induced by PTU resulted in significant slowing of BW gain 
compared to rats in the control groups (P<0.05) (Figures 2,3).  
Interestingly, the HW of rats in HT groups was significantly 
lower than that in the control group (P<0.05) (Figure 2), but 
there was no significant difference in HWI between the two 
groups (P>0.05) (Figure 2).

Effects of PTU on SIRT1 of myocardium of rats

The SIRT1 content of the myocardium in the PTU groups 
was lower than that in the control groups (P<0.05) (Figure 4).

Correlation between relative SIRT1 content and thyroid 
hormone concentrations

 The results of correlation analysis showed that the relative 
content of SIRT1 was correlated with thyroid hormones 
levels, particularly for TT3 (P<0.05) (Figure 5).

Discussion

A previous study showed that HT had a promoting effect on 
SIRT2 (homologous protein of SIRT1) in nerve cells (20). 
However, the effect of HT on SIRT1 in the myocardium 
remained unclear. We evaluated the relationship between 

Figure 1 Thyroid-related hormones levels of serum in different group and different time. a, P>0.05 vs. controls; b, P<0.05 vs. controls; c, 
P<0.05 vs. before intervention. HT, hypothyroidism; TT3, total triiodothyronine; TT4, total tetraiodothyronine; TSH, thyroid-stimulating 
hormone. 
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HT induced by PTU and SIRT1 content in rat hearts. The 
myocardial SIRT1 content of rats decreased significantly 
in HT. The rats showed slower weight gain and lower HW 
in HT. These results are consistent with those of previous 

studies (21,22).
Sirtuins are analogs of SIR2 and include seven subtypes 

(SIRT1–7) that exist as the oxidized form of nicotinamide 
adenine dinucleotide (NAD+)-dependent protein deacetylase 
(1-3). A relationship between thyroid hormones and 
SIRT1 was observed in the present study. Previous studies 
have explored the relationship between thyroid hormones 
and SIRT1 in epidermal keratinocytes and hepatocytes, 
but not in the myocardium. A previous study showed 
that expression of SIRT1 in cultured human epidermal 
keratinocytes was increased after treatment with T3 (23). 
Diiodothyronine (T2) can rapidly increase the activity of 
SIRT1 in hepatocytes (24). Thyroid hormones increase the 
content of SIRT1, and SIRT1 may exert negative feedback 
regulation on thyroid hormones. In obese rats induced by 
diet, the suppression of hypothalamic SIRT1 significantly 
stimulates the hypothalamus-pituitary-thyroid axis and 
promotes the secretion of thyroid hormones (25). The 
mechanism of the decrease of SIRT1 after HT remains 
unclear. Additionally, how thyroid hormones increase SIRT1 
content is unclear. SIRT1 has been shown to participate 
in myocardial protection. First, SIRT1 can increase the 
resistance to oxidative stress and ischemia/reperfusion 
injury via multiple pathways (4,26,27). Decreased SIRT1 in 
the heart may aggravate myocardial ischemia-reperfusion 
injury (28), cardiomyocyte apoptosis, and early-onset heart 
failure (29). Second, SIRT1 plays an important role in anti-
atherosclerotic lesions (30) and reduces the oxidation of 
low-density lipoprotein (31). Third, SIRT1 can inhibit 
myocardial apoptosis by regulating the mitochondria in 
multiple manner (9,10,32-35). Therefore, SIRT1 is a 
myocardial protective factor, and its reduction adversely 
affects the myocardium. These studies demonstrated that 
HT plays an important role in heart failure, myocardial 
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Figure 3 The change of BW in different groups. a, P<0.05 vs. 
controls. HT, hypothyroidism.
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infarction, and other myocardial ischemia. The present 
study found that administration of thyroid hormone 
may improve myocardial ischemia and hypoxia as well 
as apoptosis by reducing HT and SIRT1. Our study also 
suggests that TH-induced atherosclerosis is associated with 
a reduction in SIRT1 by HT. 

There were some limitations to our study. First, we 
did not observe myocardial tissue sections to determine 
whether there is a significant difference in morphology 
of myocardial cells between the two groups. Second, 
this study did not explore whether HT induced by PTU 
reduces the expression of SIRT1 at the transcriptional level. 
Finally, animal models were used, and we did not validate 
the results in cultured cells. Further studies are needed to 
examine the morphological changes in myocardial cells in 
the reduction of SIRT1 induced by HT and the effect of 
HT on the transcription of SIRT1. Whether increasing the 
content of SIRT1 or promoting the activity of SIRT1 in 
the myocardium can reduce myocardial damage caused by 
HT and whether this contributes to the protective effect 
of SIRT1 by increasing thyroid hormones requires further 
analysis. However, this study confirmed that PTU-induced 
HT leads to decreased levels of SIRT1 in cardiomyocytes, 
and this decrease was related to decreased TT3. Based 
on our results, myocardium injury caused by HT may be 
associated with reduced SIRT1 in the heart. 
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