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Introduction

Assessment of kidney function is clinical routine and part of 
every laboratory screening irrespective of medical discipline. 

Kidney function in chronic kidney disease (CKD) 
correlates tightly with morbidity and mortality and has a 
great impact on quality of life (1,2). In addition, patients 

with CKD are predisposed to severe threats, especially 
cardiovascular disorders like atherosclerosis and myocardial 
infarction (MI) (3). 

For decades, the assessment of kidney function has 
mainly been based on determination of serum creatinine 
and creatinine-based equations to assess GFR. However, it 
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is increasingly recognized that this marker is neither perfect 
nor accurate (4). This highlights the clinical necessity for 
new biomarkers and equations based on other cost-effective 
biomarkers, especially for a longitudinal monitoring of 
kidney function in patients with CKD. 

With respect to the great variety of pathological entities 
leading to CKD identification of a single biomarker, which 
provides a specific and reliable non-invasive measurement 
with minimal confounders might appear utopian. 

This review therefore gives an updated overview about 
new and conventional filtration markers and introduces 
new biomarkers with special attention to cardiovascular 
disorders in patients with CKD.

Assessment of kidney function based on new 
and conventional filtration markers

Over the past years, several endogenous markers of 
kidney function have been introduced. Of those, the most 
intensively investigated biomarkers are beta-trace protein 
(BTP), cystatin C and beta-2 microglobulin (B2MG) (5-8).

They are low-molecular-weight proteins (BTP, 23–29 
kDa; cystatin C, 13.3 kDa; B2MG, 11.8 kDa) which 
accumulate in serum if renal function declines. Compared 
to creatinine, they have been shown to be influenced less by 
age, sex, race and muscle mass (9). 

BTP has a minimal non-renal elimination (10). However, 
this study was published in 1973 and included only four 
patients. In contrast, cystatin C shows a considerable non-
renal clearance of 22.3 mL/min/1.73 m2 and thus greatly 
overestimates renal clearance in advanced renal failure 
(11,12). B2MG is filtered by the kidney, but is also increased 
in acute and chronic inflammation, malnutrition and 
malignancy (13). 

Albeit these biomarkers appear to be at least partially 
superior to creatinine, all of them have serious confounders 
or are poorly investigated, which limit their ability to 
predict kidney function in clinical routine. In summary, 
determination of a single biomarker certainly does not fit 
every pathology. Since invasive measurement of GFR is 
not feasible, it has to be estimated based on endogenous 
biomarkers. Several investigations addressed this issue 
recently. 

Routinely estimated GFR (eGFR) is still based solely 
on serum creatinine, although it has been reported that 
the addition of cystatin C improves the accuracy of 
GFR estimation compared to equations based on single 
biomarkers (14,15). Furthermore, equations based on 

cystatin C combined with creatinine seem to fortify the 
association between a declining eGFR and cardiovascular 
diseases (16). 

Also, equations based on BTP and B2MG have been 
introduced, however best assessed in specific populations, 
e.g. kidney transplant recipients (13) and children (17,18).

To close this gap, a recent study by Inker et al. developed 
GFR equations based on serum BTP and B2MG in a 
cohort derived from three study populations with CKD (9).  
Even though these equations might not be superior for 
determination of kidney function at a time, predictive 
assessment based on filtration markers at multiple time 
points may improve the prediction of clinical outcomes 
over a single measurement (19). An observational analysis of 
two trials tested the predictive value of the change in eGFR 
either creatinine-based or using BTP, B2MG and cystatin 
C along with invasive measurement of GFR for end-stage 
renal disease (ESRD) and mortality in a 12- and 24-month 
follow-up. A decline in eGFR (BTP) was associated more 
strongly with the risk for ESRD than invasively measured 
GFR. This leads to the assumption, that BTP potentially 
shows a predictive value for ESRD and might be a valuable 
tool for repeated assessment of kidney function.

Two recently published equations based on B2MG have 
been suggested for assessment of residual kidney function in 
hemodialysis patients (11,20). The first claims an equation 
combining serum B2MG and BTP for estimation of residual 
kidney function in patients undergoing hemodialysis, the 
latter provides an equation based solely on B2MG. 

Biomarkers in CKD related diseases

The leading cause of death in patients suffering from 
CKD is cardiovascular disease (3). As eGFR declines, 
overall mortality and the risk of cardiovascular events and 
hospitalization rise (21). 

Soluble fms-like tyrosine kinase (sFlt-1)

Primarily, the sFlt-1 was found to be a biomarker for 
preeclampsia in pregnant women (22,23). sFlt-1 is a soluble 
isoform of the Flt-1 receptor which plays an important role 
in the development of atherosclerotic disease. After binding 
with placental growth factor (PlGF) on the epithelial cell 
Flt-1 promotes atherosclerotic processes by mediating 
intramural angiogenesis and release of proinflammatory 
cytokines (24,25). sFlt-1, a product of splicing Flt-1 
mRNA binds to PlGF inhibiting the Flt-1/PlGF-pathway 
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and therefore inducing an antiangiogenic state (26). 
Elevated levels of sFlt-1 in CKD patients were associated 
with endothelial dysfunction and subsequently with 
cardiovascular mortality (27-29). This even seems to be 
apparent in patients undergoing haemodialysis (HD) (30).  
Matsui et al. showed that plasma sFlt-1 levels are higher 
in patients with CKD. Surprisingly, this changed after 
intravenous heparin injection. While sFlt-1 serum 
levels rose in all 343 subjects, peak concentrations were 
significantly lower in the 291 CKD patients (eGFR below 
60 mL/min per 1.73 m2 and/or continuous proteinuria 
over 3 months) compared to patients in the control 
group. Furthermore, higher postheparin PlGF/sFlt-1 
ratio was associated with significantly higher incidence of 
cardiovascular events during a roughly 6 months median 
follow-up period. However, this was not the case for PlGF/
sFlt-1 ratio before heparin injection (31). As mentioned 
above, previous studies have shown high sFlt-1 plasma 
levels being associated with increased mortality in renal 
failure suggesting an increased production in endothelial 
cells (32,33). In an experimental mouse model sFlt-1 mRNA 
expression was reduced in nephrectomized mice compared 
to wild-type mice. sFlt-1 was stored on endothelial 
cells and was released following heparin treatment. In 
vitro experiments with cultured human endothelial cells 
support these findings and reveal that sFlt-1 is reduced in 
presence of endothelial damage markers. Therefore, sFlt-
1 production seems to decline with a reduction in eGFR, 
while sFlt-1 plasma levels rise (31). The release of sFlt-1 
by heparin replacing it from its binding site from heparan 
sulfate proteoglycans was previously shown (34). However, 
Matsui et al. showed that the postheparin sFlt-1 levels 
reflect its overall production and thus could be a biomarker 
to estimate cardiovascular mortality (31,35).

High sensitive troponin (hsTn) 

As descried above patients with renal impairment are in 
greater risk of dying from MI. Even in early-stage CKD risk 
of long-term cardiovascular death after acute MI is higher 
compared to patients with preserved renal function (36). 
In recent years, hsTn has shown to have diagnostic and 
prognostic utility in acute MI (37,38). However, patients 
with CKD were often excluded in those studies. Elevated 
levels of cardiac troponin in those patients can occur not 
only in MI but also in other cardiac diseases as well as 
noncardiac diseases (39). Ballocca et al. analysed data from 
seven different centres over a 2-year period. Overall 647 

patients with an eGFR below 60 mL/min/m2 were admitted 
into the emergency room with suspected acute MI. hsTnI 
or hsTnT levels were assessed before coronary angiography 
as well as 3 and 6 hours after admission. Seventy-eight 
percent of the patients were treated with percutaneous 
transluminal angioplasty. Both hsTnI and hsTnT peak 
levels were predictive for short-term all cause death with 
hsTnI being more accurate than hsTnT in detecting coronary 
disease (40). Those findings are in contrast to previous 
studies that showed hsTnT as a poor marker for detecting 
acute MI in patients with renal failure (41). 

Profiling of inflammatory biomarkers

Increased mortality in patients with CKD is attributed to 
inflammation. This is reflected by investigations suggesting 
cytokines and chemokines as new biomarkers. In the 
Chronic Renal Insufficiency Cohort (CRIC) study in 2012, 
kidney function was inversely associated with serum levels 
of proinflammatory biomarkers (IL-1β, IL-1 receptor 
antagonist, IL-6, TNF-α, CRP, and fibrinogen) and positively 
with albuminuria (42). This association is even highlighted by 
a recently published study in a cohort of diabetics with kidney 
disease (43). Here, TNF-receptor 1 and TNF-receptor 2 as 
well as kidney injury molecule-1 (KIM-1) were independently 
associated with higher risk of decline in eGFR. Importantly, 
these results were validated in a cohort of incident diabetic 
kidney disease and a cohort of patients with progressive 
diabetic kidney disease implying that these biomarkers might 
serve as good predictors for the progression of CKD, at least 
in patients suffering from diabetes. 

With regard to the association of CKD and cardiovascular 
disorders, evidence suggests an influence of uremic toxins 
on cardiovascular morbidity and mortality by activation 
of leukocytes and enhancement of monocyte-endothelial 
interactions, which has been reviewed elsewhere (44). 

Addressing this issue, a recently published study on 
14 individuals of a CKD cohort investigated arterial wall 
inflammation in aorta and carotid arteries by PET/CT 
imaging. The CKD cohort displayed an increase in arterial 
wall inflammation, chemokine receptor expression and 
transepithelial migration capacity compared to the control 
cohort (45). Since severe confounders like body mass 
index (BMI), blood pressure and plasma cholesterols were 
comparable between the CKD and control cohort, the 
data is convincing. However, no definite conclusions of the 
contribution of CKD on arterial wall inflammation can be 
drawn so far. 
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Soluble urokinase plasminogen activator receptor (suPAR)

Recently published data shed light on the association of 
gene variants of apolipoprotein L1 (APOL1), suPAR (a 
member of a signaling protein family and a marker for 
immune activation) (46-48) and αvβ3 integrin (49). 

Gene variants in the APOL1 gene of individuals 
of African ancestry (50-54) have been described to be 
associated with distinct forms of CKD. Irrespective of this, 
measurement of plasma levels of suPAR (55) identified 
a tight association between elevated level of suPAR and 
incident CKD as well as an accelerated decline of eGFR. 
Podocytes express αvβ3 integrin, which has been suggested 
as a suPAR binding molecule regulating the glomerular 
filtration barrier (56-60). This study investigated a putative 
pathophysiological link between podocyte dysfunction, 
suPAR levels and APOL1 gene variants. 

They demonstrated higher levels of suPAR modifying 
the association between APOL1 genotype and eGFR 
decline in two cohorts of African American individuals. 
Further, individuals with APOL1 risk genotype revealed an 
even steeper decline in eGFR. This effect was suggested 
to be mediated by protein-protein binding of APOL1 
and suPAR as well as between APOL1 and αvβ3 integrin 
on podocytes. This tripartite complex leads to activation 
of the αvβ3 integrin pathway on podocytes resulting in 
dysregulation of the cytoskeleton and cell detachment. 
Importantly, only risk variants of APOL1 synergize with 
suPAR allowing complex formation with αvβ3 integrin on 

podocytes. These results are underlined by data generated 
in mice models where expression of APOL1 risk alleles is 
causal for altered podocyte function and glomerular disease 
in vivo. Expression of the risk-variant APOL1 alleles led 
to inflammatory-mediated podocyte death and glomerular 
scarring (61). 

Conclusions and perspectives

We have presented an update on biomarkers for the 
assessment of kidney function with focus on cardiovascular 
diseases. Due to the great variety, only a small excerpt 
of available biomarkers could be reviewed here (Table 1). 
We pointed out, that until now no biomarker appears 
to be particularly suitable in clinical routine. The 
biggest challenge might be to identify biomarkers and 
equations, which are cost-effective, reliable and beneficial 
for the assessment of kidney function. Insights in 
pathophysiological mechanisms will allow more accurate 
choices of biomarkers for specific populations. 
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Table 1 Summarizing table of reviewed biomarkers for a prognostic assessment in CKD

Biomarker Site of expression Known functions Biomarker property rationale

Beta-trace protein Several organs Prostaglandin-D-synthase 23–29 kDa (low-molecular weight protein)

Beta-2-microglobulin Nucleated cells Soluble subunit of MHC I 11.8 kDa (low-molecular weight protein)

Cystatin C Nucleated cells Cysteine protease inhibitor 13.3 kDa (low-molecular weight protein)

sFlt-1 Endothelial cells Binding site for PlGF Intramural angiogenesis; proinflammatory

hsTnT/hsTnI Cardiac myocytes Contraction of striated muscle Marker for MI

Proinflammatory cytokines 
(IL-1β, IL-6, TNFα, IL-18)

Monocytes/macro-
phages/dendritic cells

Inflammation; immunomodulator Attribution of CKD to inflammation

APOL1 risk variants Soluble; podocytes; 
proximal tubules

Minor apoprotein component of HDL Inflammatory-mediated podocyte death

suPAR Soluble Membrane bound receptor for urokinase Marker for immune activation

PlGF, placental growth factor; sFlt-1, soluble fms-like tyrosine kinase; hsTn, high sensitive troponin; APOL1, apolipoprotein L1; MI, 
myocardial infarction; CKD, chronic kidney disease; HDL, high-density lipoprotein; suPAR, soluble urokinase plasminogen activator 
receptor. 
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