
Page 1 of 6

© Journal of Laboratory and Precision Medicine. All rights reserved. J Lab Precis Med 2018;3:55jlpm.amegroups.com

In the past, people thought that reproductive system 
diseases were due to changes in environmental, physical 
and chemical factors; hormone disorders; or pathogen 
infection. With the development of medical technology, 
people have begun to pay more attention to reproductive 
system diseases caused by chromosome abnormalities. In 
this paper, we will integrate current cutting edge research 
findings to discuss the association between chromosome 
karyotype abnormalities in peripheral blood lymphocytes 
and azoospermia, oligospermia, amenorrhea, abnormal 
gonad development and adverse pregnancy outcome.

Azoospermia or oligospermia and chromosome 
karyotype abnormalities

Sexual chromosome abnormalities are the most important 
contributor to azoospermia or oligospermia. This 
phenotype is more common in patients with Klinefelter 
syndrome, which has the chromosomal karyotype 47, 

XXY. Patients have basically normal or slightly lower 
intelligence. They are tall with slender limbs, a short penis, 
poorly developed testicles and no sperm. Furthermore, 
they have developed male breasts and less beard, armpit 
hair and pubic hair. Zhang et al. (1) reported that 10.55% 
of individuals with Klinefelter syndrome were azoospermic. 
Infertility in these patients is a consequence of the direct 
harmful effect of an extra X chromosome, which causes a 
lethal gene dosage effect in testicular cells that results in  
azoospermia (2).

Recent studies have shown that the absence of azoospermia 
factor (AZF) on the long arm of the Y chromosome can 
also lead to azoospermia or severe oligozoospermia, which 
is closely related to male infertility. AZF is a set of genes 
or gene clusters associated with spermatogenesis. Previous 
studies revealed that Y chromosome microdeletions occurred 
in 1% to 55% of infertile men with azoospermia or severe 
oligozoospermia (3-6). In another study, the prevalence 
of AZF microdeletions was 10.80%. The frequency of 
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AZF microdeletions was 11.75% among patients with 
azoospermia. Deletions of the different AZF regions occur at 
different frequencies. Previous data (3,7,8) were confirmed 
by more recent findings that classical AZFc deletions were 
the most frequent finding (54.17% of deletions in our cases), 
followed by those in the AZFbc region (18.75%), AZFb 
(10.42%) and AZFa (9.03%) regions (9). 

Studies have shown that DAZL gene methylation is 
closely related to male infertility. Navarro-Costa et al. 
performed a comparative analysis of semen from normal 
men and men with oligospermia or asthenospermia. 
They evaluated CpG methylation in the promoter of 
the reproductive regulatory gene DAZL and found 
it be statistically higher in semen from patients with 
oligospermia or asthenospermia. These data indicate that 
hypermethylation of the DAZL gene is associated with 
abnormal spermatogenesis. Perhaps hypermethylation 
inhibits the expression of certain functional sperm proteins 
during spermatogenesis, leading to male infertility (10).

Amenorrhea and chromosome karyotype 
abnormalities

Female amenorrhea is a common complication in 
gynecological clinical treatment that is classified as primary 
amenorrhea (PA), which is the failure of menses to occur 
by the age of 16, or secondary amenorrhea (SA), in which 
menses begins at puberty but is subsequently ceases (11). 
The prevalence of PA and SA in the United States is less 
than 1% and 5–7%, respectively. No evidence indicates that 
the occurrence of amenorrhea varies according to national 
origin or ethnicity (12), PA is primarily caused by pituitary/
hypothalamic disorders (27.8%), gonadal dysfunction 
(50.4%), or outflow tract abnormalities (21.8%) (12,13). 
Thus, gonadal/ovarian disorders make up half of the all PA 
cases. This category of etiology often stems from abnormal 
sex chromosomes (13). In addition to gonadal dysplasia, 
patients tend to have a short stature, webbed neck, cubitus 
valgus, shield chest, immature vulva, breast dysplasia and 
other symptoms and signs of Turner syndrome (TS).

TS is the most common chromosomal aneuploidy; 
it affects 1 in every 2,000 girls and is characterized by a 
short stature and gonadal dysgenesis in females who lack 
all or part of one X chromosome (14). Approximately 
50% of patients with TS have complete loss of one X 
chromosome, whereas the remaining of patients with TS 
display mosaicism or structural abnormalities of the X 

chromosome, for example, 46,X,i(Xq); 46,X,del(X); or 
46,X,r(X) (15). Similar to complete monosomy X, partial 
deletions of either the short or long arm can cause features 
of TS. Many studies have been conducted to verify and 
delineate the proposed loci for genes pertaining to the 
TS phenotype; some have indicated that the genes for 
physical and cognitive features lie on Xp, whereas the 
genes for ovarian function are present on both Xp and Xq 
(16,17). Approximately one-third of girls with TS may 
enter spontaneous puberty, but only half them completed 
menarche (18). The prevalence of spontaneous puberty 
is higher among patients with mosaic TS. In addition, 
there have been a few rare cases of TS with precocious  
puberty (18-22).

Gonadal dysplasia and chromosome karyotype 
abnormalities

Disorders of sex development (DSD) are congenitally 
conditions with atypical chromosomal, gonadal or 
anatomical sex development. Sexually differentiated diseases 
are clinically diverse. External genital abnormalities can 
present as completely male or female, but more often the 
phenotype is intermediate. Chromosomal abnormalities 
can cause various deformities, especially when chromosome 
number or structure is affected, leading to cause genital 
malformations, gonadal dysplasia and poor development 
of secondary sex characteristics. Based on chromosomal 
classification, DSD is divided into sex chromosome 
abnormalities, 46,XY DSD and 46,XX DSD (23).

Sex chromosome abnormalities DSD include Klinefelter 
syndrome, Turner’s syndrome, super-male syndrome, 
and ultra-female syndrome. The XYY karyotype has an 
incidence of one in 1,000 male newborns and may result 
from a nondisjunction in paternal meiosis II or postzygotic 
mitotic nondisjunction (24-26). The 48,XXXY syndrome 
has an incidence of 1:50,000, and patients present as male 
with external genital dysplasia (27,28). The pathogenesis 
may involve the dissociation and inactivation of the excess 
X chromosome; however, the inactivation of the genes on 
the chromosome is not complete, and the inactivated gene 
expression leads to gonadal dysplasia (29).

46,XY DSD and 46,XX DSD include additional marker 
chromosomes (mar), autosomal balanced translocations, 
Robertsonian translocation, and sex reversal. Mar 
chromosomes are a structural abnormal, and patients have 
the karyotype 48,XY,+mar1,+mar2. Although the source 
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of the chromosome cannot be determined, it is thought 
that it may carry decisive development-related genes, thus 
affecting the development of the reproductive system. Sex 
reversal includes 46,XY testicular feminization syndrome 
and 46,XX male syndrome. The first phenotype is typical 
of women, who present with good breast development, a 
blind vagina, and PA before and after adolescence. The 
second phenotype is male with testicular dysplasia, and 
the pathogenesis is associated with deletion, mutation, or 
translocation of the sex-determining region Y gene (SRY) 
on the Y chromosome (30).

History of adverse pregnancy outcome and 
chromosome karyotype abnormalities

Chromosomal  abnormal i t i e s  a re  more  common 
in spontaneous abortion, patients with congenital 
malformations or dysplasia, advanced maternal age 
pregnancy and infertile couples, leading to spontaneous 
abortion, infertility, congenital malformations and low 
intellect, which have a considerable societal impact. 
Balanced chromosomal translocation accounts for most 
cases; it has been observed in 0.6% of infertile couples 
and in as many as 9.2% of couples with recurrent 
miscarriages (31). Reciprocal translocation is defined 
as the exchange of chromosomal material between the 
arms of 2 heterologous chromosomes, thus changing the 
order but typically not the amount of genetic material. 
Carriers of balanced chromosomal translocations may 
have all of the necessary genetic information for normal 
development. Balanced translocations can be transmitted 
through generations; it is assumed that most familial 
cases are phenotypically normal, resulting from balanced 
rearrangements (32). However, when one member of 
a couple carries a balanced chromosome translocation, 
the risk of miscarriage is approximately doubled (33). 
Individuals with balanced reciprocal translocations are 
known to have high rates of unbalanced gametes, exhibit 
impaired or reduced gametogenesis, produce large numbers 
of unbalanced embryos and have a greater chance of being 
infertile and/or a high risk of conceiving chromosomally 
abnormal pregnancies that lead to recurrent spontaneous 
abortions or children with congenital anomalies (34-36). 
The Robertsonian translocation is also referred to as a 
“centric fusion” translocation of the entire long arms of 
two acrocentric chromosomes (chromosomes 13, 14, and 
15 of the D group, and chromosomes 21 and 22 of the 

G group) after breakage at the centromeres (37). During 
meiosis, these rearrangements form trivalent, which upon 
segregation, may result in nullisomic or disomic gametes 
for one of the chromosomes involved in the rearrangement 
and, consequently, a zygote with trisomy or monosomy 
for one of the involved chromosomes. In humans, an 
individual with a “balanced” Robertsonian translocation 
has a karyotype of 45 chromosomes, with the translocation 
chromosome containing the two complete long arms of 
the two acrocentric chromosomes involved. The short 
arms of the two translocated chromosomes are lost. The 
most common Robertsonian translocation is between 
chromosomes 13 and 14. Translocation between the D 
and G groups is responsible for approximately 75% of all 
Robertsonian translocations, and the potential live-born 
chromosomally unbalanced outcome of this translocation 
is trisomy 13; there is also potential for uniparental disomy 
of chromosome 14 following trisomy rescues. The second 
most common Robertsonian translocation is between the 
D and G groups (14 and 21), and the potential live-born 
unbalanced outcome of this is trisomy 21, resulting in 
Down syndrome (38).

Chromosome inversion is also more common, and the 
main clinical manifestations are infertility, abortion and 
stillbirth. Chromosome inversion is divided into pericentric 
inversion and paracentric inversion. The mechanism 
underlying adverse pregnancy outcome is the matching of 
homologous chromosome fragments in germ cells during 
meiosis. In theory, this will create four kinds of gametes: 
one is a normal individual, one is an inverted carrier, and 
the other two harbor partial duplication and partial deletion. 
Pericentric inversion of chromosome 9 [(9)(p11q13)] is a 
frequently seen chromosomal alteration in humans due 
to its structural organization, which makes it more prone 
to breakage. The incidence is estimated at 1–3% of the 
general population, with the lowest rate among Asians at 
approximately 0.25% (39,40). There are several conflicting 
assessments of its clinical impact; some studies claim it to be 
a normal variant, while others have associated it with several 
diseases, such as infertility and poor obstetric history. 
Among the various types, inv(9)(p11q12) and inv(9)(p11q13) 
are the most common. Variable clinical manifestations have 
been observed from normal to multiple malformations 
among babies born to carriers of such structurally balanced 
chromosomal aberrations (41).

There are no definite conclusions about the relationship 
between chromosomal polymorphisms and reproductive 
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abnormalities. The conventional view is that the alterations 
do not cause phenotypic effects, but an increasing number 
of studies have found that such polymorphisms have clinical 
consequences. Chromosomal polymorphisms refer to the 
constant, small but non-pathological difference in the 
structure and tinctorial strength of chromosomes between 
different individuals. It usually refers to variation in the 
satellite zone of the D/G group chromosomes, insertion 
or deletion of the secondary constriction of chromosome 
1, 9, 16 and Y chromosome; and inversion of chromosome 
9 and Y (42,43). When the homologous chromosomes 
with polymorphisms pair, the polymorphic section cause 
difficulties in homologous chromosome pairing, which 
affects cell division, leading to embryonic developmental 
disorders that result in abortion, embryonic death or 
chromosomal abnormalities (43).

Currently, the primary treatments for chromosomal 
diseases are symptomatic treatment and correction of organ 
deformity. Gene therapy, cellular therapy and alternative 
therapy are under development. However, chromosome 
abnormalities are difficult to treat, and the curative effect 
is not satisfactory. There is no effective medicine for 
congenital mental retardation. Patients can try Chinese 
medicine or rehabilitation training. The prognoses of 
different types of chromosome dysplasia are not the same, 
most ae undesirable. Therefore, prevention is particularly 
important. Preventive measures include the implementation 
of chromosome counseling and chromosome detection. 
The best preventative measure is third-generation of IVF 
(genetic screening) to prevent  the birth of fetuses with 
chromosomal abnormalities. Pregnant women should 
attend regular prenatal checkups to identify fetal problems 
as soon as possible.
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