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Introduction

Anemia, which is currently defined by the World 
Health Organization (WHO) as a hemoglobin value in 
whole blood <120 g/L in women and <130 g/L in men, 
respectively (1), can now be regarded as a worldwide 
endemic disease, with an estimated prevalence of 1.62 
billion people, which approximates 25% of the worldwide 
population (2). Albeit iron deficiency is the leading 
cause of anemia (i.e., approximating 50% of cases), this 
condition is rarely present alone, but may coexist with a 
kaleidoscope of other causes such as nutritional deficiencies 
(i.e., folate or vitamin B12 deficiencies), acute or chronic 
bleeding, hereditary red blood cell (RBC) disorders (i.e., 
hemoglobinopathies, spherocytosis), infections, renal 
or liver impairment, cancer and chronic inflammatory 
conditions (Table 1) (1).

Since the clinical signs and symptoms of anemia are 
often poorly specific, and may also be subtle, especially 

in patients with chronic forms of anemia, laboratory 
hematology represents a virtually unavoidable part of both 
the diagnostic reasoning and clinical decision making, 
since laboratory tests provide irreplaceable information 
for screening, diagnosis and monitoring of RBC disorders 
(3,4). Beside the conventional measurement of whole blood 
hemoglobin content, which is a necessary precondition 
for diagnosing anemia, the preliminary classification of 
anemias is usually based on the values of mean corpuscular 
volume (MCV) and RBC distribution width (RDW) (5), 
as summarized in Table 1. This approach is still forthright 
and valid, but does not enable a definitive etiological 
characterization, and should hence be complemented with 
a panel of additional laboratory investigations. Importantly, 
a number of technological advances occurred over the past 
few decades have enormously contributed to broadening the 
diagnostic armamentarium and making more efficient and 
sustainable the diagnostics of RBC disorders. Some on these 
important innovations will be summarized in the following 
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parts of this article.

Automation of laboratory hematology

Laboratory automation should be regarded as one of 
the major advancements occurred in RBC diagnostics. 
Laboratory automation is conventionally defined as a multi-
disciplinary integration of robotics, information technology 
(IT), sample handling and many other technologies 
aimed at developing and optimizing both workflow and 
activities within medical laboratories (6). Briefly, laboratory 
automation may bring paramount benefits to in vitro 
diagnostic testing, including easier and more efficient 
management of workflows, better withstanding the 
increasing complexity and volume of routine and urgent 
testing, improved turnaround time (TAT), dismissal of 
many manual activities, enhanced walk-away, cost savings 
(i.e., especially those attributable to subsidiary staff and 

technicians), improved standardization of procedures, 
lower chance of errors throughout the total testing process, 
decreased biological risk, along with opportunities to 
implement automatic reruns or reflex testing (7).

Laboratory automation has been for long limited 
to clinical chemistry and immunochemistry platforms. 
The major hurdle encountered in developing models of 
automation for laboratory hematology is represented by the 
peculiar sample type, which is whole blood anticoagulated 
with dipotassium ethylenediaminetetraacetic acid 
(EDTA) (8). The presence of EDTA in the sample, 
which irreversibly sequestrates ionized calcium and 
many other metal ions (9), makes EDTA plasma an 
unsuitable sample matrix for clinical chemistry and even 
for coagulation testing, thus generating considerable 
obstacles for consolidation of laboratory hematology with 
other branches of laboratory medicine. Nevertheless, a 
number of technological solutions have been developed 
for laboratory hematology in recent times. These basically 
include (I) commercialization of modular, high-throughput 
and versatile analyzers, which can be easily interconnected 
by means of sample conveyers, and can fit the organization 
of small, medium and large facilities, (II) integration of 
preanalytical workstations, which can be identical to those 
included in models of total laboratory automation, or can 
be specifically designed to suit hematological testing, (III) 
connection with automated slide strainers, which help 
improving the entire slide making process (i.e., less manual 
activities and lower biological risk, improved standardization 
of slide preparation and staining, customization of staining 
protocols, reduction of TAT) (10), as well as (IV) integration 
of automated image analysis systems (see the following 
section of this article). This organization is often referred to 
as “modular laboratory hematology” (Figure 1).

Digital hematology

Throughout the relatively long history of laboratory 
hematology, the only reliable means for identifying, 
enumerating and sizing blood cells has been for long 
represented by optical microscopy of peripheral blood 
smear. This practice carries many drawbacks, since it is 
inevitably time-consuming, is vulnerable to high inter- and 
intra-observer inaccuracy and imprecision, needs specific 
education and training of microscopists, and is poorly suited 
for rapid diagnostics as otherwise needed in patients with 
many acute hematological disorders (11). 

Recent technological advances have led to development 

Table 1 Classification of anemia according to RDW and MCV

Condition RDW MCV

Nutritional deficiencies

Iron deficiency ↑ ↓

Folic acid deficiency ↑ ↑

Vitamin B deficiency ↑ ↑

β-thalassemia ↑ ↓

Hemolytic anemias

Immune hemolytic anemia ↑ ↑

Hereditary spherocytosis N/↑ N/↓

Anemic hemoglobinopathies (i.e., SS, SC) ↑ N

Sickle cell trait N ↓

Chronic disorders

Chronic diseases anemia N ↓

Chronic liver disease ↑ N/↑

Hematologic disorders

Aplastic anemia N ↑

Chronic leukemias N N

Myelodysplastic syndrome ↑ ↑

Other thalassemias N ↓

Acute hemorrhages N N

↑, increased; N, normal; ↓, decreased. RDW, red blood cell 
distribution width; MCV, mean corpuscular volume.
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and commercialization of innovative automated image 
analysis systems, which are suited for automation and can 
hence be directly connected (in series) with hematologic 
analyzers (Figure 1) (12). These innovative platforms scan 
the slides (usually at a picture of ×100 objective), and store 
digitalized images of blood smears at high magnification. 
The images are analyzed by artificial neural networks based 
on a preexisting database of blood elements (thus including 
RBC), which can be locally customized or updated by the 
users. The images can be transmitted to, and displayed 
on, computer screens, which can be even placed at long 
distances from the scanner (i.e., in hospital wards or in 
remote laboratories) (Figure 1), for analysis and potential 
reclassification of blood elements. The operator can also 
increase the size of the images, or expand single sections of 
the scan, so obtaining a more accurate view. The operator 
can then accept and conserve the automatic classification, 
or can move elements from one cell category to another, 
thus improving the final reclassification. Albeit these 
automated image analysis systems have been originally 
developed for analysis of white blood cells (WBC), 
specific information can also be garnered on erythrocyte 
morphology, thus including the presence of anysocytosis, 
hypochromia, microcytosis or macrocytosis, spherocytosis, 
elliptocytosis, ovalocytosis, stomatocytosis, acanthocytosis, 
echinocytosis, polychromasia, poikilocytosis and abnormal 
erythrocytes (i.e., sickle cells and schizocytes, helmet and 
teardrop cells) (13). Recent data showed that the diagnostic 
sensitivity of these systems for identifying some critical 

categories of abnormal erythrocytes (i.e., spherocytes or 
sickle, target and tear drop cells) is excellent, typically 
higher than 80% (14), thus making the use of digital image 
analysis a highly valuable, and probably more accurate and 
reproducible, alternative to optical microscopy. 

Notably, the use of these systems may also enable 
an efficient recognition of parasitoid infections such 
as Malaria (15), as well as the reliable identification of 
intravascular and spurious hemolysis, which would be 
otherwise undetectable on whole blood specimens (16,17). 
Interestingly, most of these automated image analysis 
systems are also capable of optimizing the identification of 
rare RBC abnormalities, since morphological erythrocyte 
alterations can be more efficiently visualized on the 
computer screen (18). Finally, the creation of a large 
personalized database of images of suggestive RBC 
abnormalities represents a valuable resource for education 
and training of students and laboratory professionals (19).

Innovative erythrocyte parameters

Irrespective of the fact that the diagnosis of anemia is 
relatively simple and straightforward (by measuring total 
hemoglobin in whole blood), the newer generation of 
hematologic analyzers is now equipped with many analytical 
and technical innovations, which enable obtaining other 
information than that reported with the traditional complete 
blood cell count (CBC), and which may ultimately provide 
a substantial improvement for the differential diagnosis 

Hospital wards Remote laboratories

1.	Preanalytical workstation
2.	Modular hematological analyzer
3.	Automated slide stainer 
4.	 Image analysis system

Figure 1 Modular laboratory hematology.
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of anemias (20). Although a more detailed discussion will 
be omitted for space constraints, some important aspects 
deserve a special mention. These innovative parameters 
most typically include automated reticulocyte and nucleated 
RBC counts, hemoglobinization of reticulocytes and RBC, 
reticulocyte hemoglobin content (occasionally defined as 
CHr and RET-He according to the technology used for its 
assessment), reticulocyte maturation, automatic analysis and 
calculation of microcytic and hypochromic RBC (21,22). 
The various combination of these different parameters not 
only may be useful to complement clinical history, physical 
examination and results of more conventional laboratory 
investigations (i.e., CBC, ferritin, transferrin, iron, 
haptoglobin, folic acid and vitamin B12, among others) for 
troubleshooting the underlying cause(s) of anemia (23), but 
may also be clinically useful for diagnosing, prognosticating 
and monitoring other non-RBC disorders, as recently 
shown for patients with sepsis (24), chronic kidney 
disease (25) and cancer (26). The generation of complex 
scattergrams (27,28), which is now almost commonplace in 
the vast majority of hematologic analyzers, is also helpful for 
more accurately identifying abnormal RBC populations and 
other atypical elements, as recently shown for diagnosing 
malaria (29).

Disruptive technologies

Regardless of consolidated laboratory techniques, which 
have just recently made their way through phenotypic 
diagnostics of anemia (i.e., capillary electrophoresis) (30), a 
major innovation has been represented by the application 
of mass spectrometry and molecular biology in the 
diagnostics of hemoglobinopathies. The former approach 
allows a better characterization of hemoglobin variants 
preliminarily identified by screening techniques such as 
high-pressure liquid chromatography (HPLC) or capillary 
electrophoresis (31), whilst molecular diagnostic techniques 
enable to unravel specific molecular abnormalities 
characterizing many congenital RBC disorders (32). 

Unlike screening tests, the selection of the most 
appropriate molecular diagnostic approach in patients with 
inherited hemoglobinopathies or RBC enzymopathies 
should take into account the prevalence and penetrance of 
the different mutations in the ethnic populations, across 
different geographical locations. Therefore, the first step 
may be represented by polymerase chain reaction (PCR)-
based techniques [e.g., restriction-endonuclease PCR 

(RE-PCR), amplification refractory mutation system 
(ARMS), resolution melting analysis (HRMA), denaturing 
gradient gel electrophoresis (DGGE)]. Allele-specific 
methodologies, such as allele-specific PCR and reverse 
dot-blot, are especially useful for thalassemia diagnostics 
in target populations, enable processing a high volume of 
samples and are relatively inexpensive, permitting to screen 
some prevalent hemoglobin genes mutations at the same 
time. Array comparative genomic hybridization (array 
CGH) can then be used for detecting additional mutations 
which cannot be identified with first-line DNA analysis. 
Regarding thalassemias, gap-PCR (gap-PCR) and multiplex 
ligation-dependent probe amplification (MLPA) are perhaps 
the best options for screening and also for detecting large 
deletions or duplications of globin genes, which cannot be 
identified with conventional DNA sequencing. Sanger or 
next-generation sequencing (NGS) techniques may then be 
particularly suited for detecting all known point-mutations, 
but may also enable indentifying novel or rare mutations, 
thus helping to uncover new mechanisms of disease. A 
reliable guidance for the cost-effective integration of these 
different molecular techniques has recently been published 
by the European Molecular Genetics Quality Network 
(EMQN) (33). Notably, emerging evidence also suggests 
that molecular genetic testing has a pivotal role in patients 
with diseases characterized by clonal hematopoiesis, 
thus supporting the diagnostic workout of hematologic 
malignancies and/or myelodysplastic syndromes (34).

Conclusions

Albeit the laboratory diagnostics of anemia remains a rather 
simple enterprise, accurate disease characterization has 
emerged as a mainstay in the era of precision (laboratory) 
medicine, even for RBC disorders (35). The many 
technological advances occurred in laboratory medicine over 
recent times have enabled the introduction of a vast array 
of innovations (Table 2), which have led the way to a more 
efficient patient care and a more convenient organization 
of resources and workflows within the laboratory. In the 
foreseeable future, the better understanding of phenotypic 
heterogeneity of RBC disorders, also supported by IT tools 
such as expert diagnostic systems (36) or artificial neural 
networks (37), will predictably enable to improve the global 
management of these disorders at multiple levels. Yet, some 
additional issues will need to be addressed, on top of it all the 
current lack of harmonization in laboratory hematology (11).
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