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Introduction

Deoxyribonucleic acid (DNA) is exposed to several 
endogenous as well as exogenous factors that can profoundly 
change and damage its structure and function (1).  
DNA damage response (DDR) mechanisms signal the 
presence of DNA damage and exert their repair by often 
redundant pathways. Cells counteract DNA damage events 
by various repair mechanisms like non-homologous end 
joining (NHEJ), homologous recombination (HR) (2), 
mismatch repair and base or nucleotide excision repair 

(3-5). The detection and assessment of DNA damage 
like DNA double-strand breaks (DSBs) are of interest in 
clinical diagnostics, cancer research, radiation therapy, 
chemotherapy, forensics and life sciences (6-10). DSBs are 
a common type of DNA damage. They are accompanied 
by the phosphorylation of the histone 2AX (H2AX), which 
can be detected as discrete spots, the so-called γH2AX focal 
points (foci), using immunofluorescence detection methods 
(e.g., fluorescence microscopy) (2,11-13).

The quantification of foci is considered as a tool for 
precision medicine. Precision medicine uses biomarkers 
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to stratify patients. One goal is to develop a tailor-made 
therapy for each patient, which can be based on the 
automated processing of large image data sets and the 
classification of defined biomarker image patterns (14).  
Bioimage informatics is a branch of bioinformatics that deals 
with informatics tools to support the analysis and numerical 
description of images in biological and biomedical studies.

The analysis of DNA damage is also discussed as a 
tool for forensics. DNA in environmentally contaminated 
samples often contains several complex lesions and is 
highly fragmented (15,16). A positive correlation between 
the post-mortem interval (PMI) and the strength of DNA 
fragmentation and DNA damage has been reported. DNA 
damage can lead to strong enough fragmentation that PCR-
based methods will no longer be applicable for analysis, 
which will lead e.g., to the failure of DNA genotyping 
(17,18). Previously it was shown that γH2AX foci are 
formed preferentially in actively transcribing euchromatin 
following γ-irradiation (19). Thus, also microsatellite DNA 
is affected, which is used for forensic DNA analysis, as it is 
widely distributed over euchromatin (20). In this case, DSB 
analysis with imaging techniques and bioimage informatics 
may reduce the number of false-negative results. As of 
completion of this study there was no application of γH2AX 
foci analysis in forensics.

Manual counting, the traditional method for quantifying 
foci in microscopic images, is criticized as time-consuming 
and user-unfriendly. Therefore, software packages were 
developed to support the foci counting. Some of these 
software packages, such as FindFoci, were specifically 
designed for the analysis of DSBs while other software 
packages such as CellProfiler serve as multipurpose tools 
also applicable for foci quantification. This review provides 
a brief overview about DNA damage and open source 
software for automated analysis of DSBs from image data. 
The study is aimed at researchers who have no background 
in bioimage informatics (21-23). The authors of this 
study hope to support researchers during their quest for 
appropriate software.

Biomarkers for the analysis of DNA damage

DSBs are common and often result in fatal DNA damage 
at the cellular level. H2AX phosphorylated at serine 139 
(γH2AX) is a surrogate biomarker of DSBs (11,24-26). 
γH2AX is an early biomarker that serves as signal for the 
recruitment and accumulation of protein complexes in the 
close vicinity of DSBs supporting efficient recognition and 

repair thereof (27). However, γH2AX is also induced by 
some non-DSB conditions during apoptosis, which may lead 
to an overestimation of genotoxic agents and thus impairs 
the accuracy of DSB assessments (28). This problem can 
be addressed by the analysis of γH2AX recruited mediators 
and transducers such as the DNA-damage response (DDR) 
sensor p53-binding protein 1 (53BP1). 53BP1 is co-localized  
with γH2AX and facilitates the DDR. Similar to γH2AX, 
53BP1 accumulates immediately at the damaged DNA sites 
as foci. Therefore, 53BP1 is often quantified along with 
γH2AX (29-31). Understanding the temporal sequence of 
DSB biomarkers during the DDR could help to develop 
new cancer therapies. In this context, the nucleus size serves 
as an indicator of cell viability, since cytostatic drugs such as 
etoposide can cause nuclear expansion (32).

Löbrich et al. discussed pitfalls and use cases of γH2AX 
assays. Among other things, they underlined the importance 
of the cell cycle on γH2AX formation during irradiation. 
To optimize the assay, they proposed to monitor the cell 
cycle with cell cycle markers such as Cyclin A or CENP-F. 
Consideration of chromatin remodeling might not only 
be beneficial for the analysis of DSBs, but could ultimately 
improve precision medicine by providing detailed 
phenotypic information (33).

The biomarker Ku70 enables to gauge the cellular 
DDR capacity and the health status of cells (34,35). Other 
biomarker proteins, such as 53BP1, Rad50, Rad51, Nbs1 
and the product of the tumor suppressor gene BRCA1, are 
associated with the repair of DSBs and accumulate as foci in 
the immediate vicinity of DBSs (36,37). Image analysis tools 
are used for spatiotemporal cell cycle phase analyses (38,39).

Another application of these biomarkers is  the 
concurrent assessment of apoptotic processes, where 
nuclei and chromatin are condensed. This leads to an 
accumulation and aggregation of γH2AX as well as 
translocation of proteins in the plasma membrane (40). Foci 
forming biomarkers of the DDR can be characterized by 
measuring total nuclear fluorescence signal, estimating foci 
positivity and scoring the number of foci per nucleus or per 
nuclear area (41).

Biomarkers differ in their characteristics and do not 
necessarily occur as discrete spots (foci). Some occur 
as homogeneous or cytoplasmic. They may appear as 
centromeric, nucleolar or speckled pattern or as nuclear dots 
(42). Biomarkers with dense fine speckled pattern like dense 
fine speckles 70 kD protein (DFS70) are challenging to  
quantify (43). Here, the image analysis demands software 
with robust pattern recognition algorithms. In consequence, 
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software for DSB assessment needs to quantify such 
parameters and should follow guidelines for the image 
analysis (Figure 1). An example is the estimation of the 
Mitotic Index (MI) provided by the CellProfiler open 
source software. This can be used for the assessment of the 
cellular viability by automatic detection of mitotic cells and 
nuclei (44).

Techniques for assessment of DNA damage

Image analysis is influenced by the experimental conditions 
like the treatment of the specimen as well as the used 
microscopic technique (Figure 1). The image acquisition 
is limited by the optical system and sensors (45). Since this 
review focuses on the software packages for quantification of 
foci data, we would like to refer the reader to the references 
given and the study of Jennifer C. Waters (46).

Automatic foci analysis is limited by the sensitivity of the 
γH2AX foci labeling and the detection system. Rogakou 
et al. estimated that approximately up to 2,000 H2AX 
molecules are phosphorylated per DSB. However, this does 
not tell how many specific anti-γH2AX antibodies bind to 
a focus (11). It is assumed that a few hundred of secondary 
antibody molecules generate a signal that exceeds the 
threshold.

Relative quantification of DNA damage

Bioanalytical methods for the assessment of DNA damage 
and DSB quantification have been reviewed extensively (47).  
The assessment of DNA damage can be carried out by 
the cytokinesis-blocked micronucleus assay as a standard 
biodosimetry assay (48), the fluorimetric detection of 
alkaline DNA unwinding (FADU) assay for detection of 
DNA strand breaks (49,50) and immunoblot analysis in 
combination with densitometry to measure the total amount 
of γH2AX.

Flow cytometry is also used to measure the total 
intensity of γH2AX fluorescence signals (Figure 1) (51). 
Most image cytometers work in 2D only and the analysis of 
the spatial distribution and overlapping foci is demanding. 
Wadduwage et al. developed an in-house, high-throughput 
image cytometer with a HiLo wide-field depth resolved 
imaging and a remote z-scanning technique (52,53). They 
achieved imaging speeds as high as 800 cells/second with 
a 3D resolution (54). The fixation with paraformaldehyde, 
permeabilization with Triton/PBS, blocking with BSA and 
immunostaining with fluorescent antibodies are similar to 

standard sample preparation for flow cytometry. One may 
argue, that the 3D cell structure of the image cytometer or 
fluorescence microscope approach resemble more closely 
the native cell structure. However, image cytometers have 
several limitations. In some cases loss of sample material 
during the scanning process is unavoidable. Repeated 
measurements are impossible in this case. They are 
technically more demanding and their maintenance requires 
more effort than conventional fluorescence microscopes.

The comet assay enables the detection of single-stranded 
DNA breaks, variations in the DNA repair pathways (incl. 
nucleotide excision repair, NHEJ, mismatch repair, base 
excision repair) besides the analysis of DSBs. The formation 
of comet-like tails in the electrophoretic field can be readily 
visualized and subsequently analyzed by image software 
employing a set of numeric descriptors and scores (55-58). 
There is still an ongoing discussion if manual or automatic 
scoring in this context is the best approach (59,60).

All these methods do not report the number of DSBs 
per cell but a sum signal of all cells analyzed (relative 
quantification).

Absolute quantification of DNA damage by bioimage 
informatics

The region of interest (ROI) for foci image analysis is the 
nucleus. A standard approach to label the nucleus is by 
chromatin staining substances (e.g., DAPI). Stained regions 
are analyzed by projection of a maximum intensity algorithm 
of z-stacks and subsequent deconvolution (61). Others used 
Deep Learning strategies for nucleus segmentation (62).

Immunofluorescence staining of γH2AX to detect DSBs 
is frequently used (47). This staining results in discrete 
fluorescent foci in the nucleus. Foci are countable (absolute 
quantification) by fluorescence microscopy in combination 
with digital image analysis. Basic steps for quantification 
of foci analysis are (I) image capturing, (II) thresholding/
segmentation, (binary) mask creation, and (III) foci  
counting (63).

Thresholding (value that separates between the nucleus 
and the background) is a critical step. Otsu’s automatic 
threshold method is widely used (64). Several algorithms 
are available for image segmentation, shape fitting, and 
feature extraction. Gray level histograms, fuzzy set theoretic 
approaches and second-order edge detection and principal 
component analysis with thresholding have been proposed 
(65,66). Noise can be dealt with by Markov Random Field 
(MRF) models and neural network architectures (67,68).
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Pixel with a higher intensity than the background pixels 
can be considered as a focus or part thereof. Further foci 
parameters like the height, width, shape and distance from 
other foci can be used to minimize the detection of false-
positive foci (63,69).

Depending on the analysis concept, the evaluation process 
can be carried out in a semi-automatically fashion. Here, 
manual operations are needed for nuclei detection (61).  
Thereby, each image is analyzed step-wise or in a batch 
(24,29,48) or a set of images is automatically processed by 
the software with user defined parameters (69). There is a 
tradeoff between the number of required user interaction 
and the usability. Software packages requiring the user to 

adjust many parameters for the analysis impact the usability 
negatively and may result in a counter-intuitive analysis  
tool (70,71).

Image-based assays with corresponding software have 
been made commercially available [e.g., Aklides, Medipan, 
Germany (42); EUROPattern, EUROIMMUN AG, 
Germany (72); Metafer, Metasystems, Germany (73); 
NOVA View®, Inova Diagnostics, Inc., USA (74)]. High-
content and high-throughput imaging technologies for 
DNA damage assessment on cellular molecular level 
allows researchers to better understand of biomedical  
processes (71).

To avoid problems and to ensure high quality data after 

Figure 1 Schematic overview of workflow and techniques in biomarker validation. (A) The usage of several methods makes it possible to 
analyze and visualize potential biomarkers to all sides. Thereby, immunoassays represent the most elegant way. (B) The choice of the method 
determines the approach to analyze the received data. Already the choice of the software should be considered, since the respective attitudes 
can affect crucially the result. (C) A typical workflow of bioimage informatics software analyzing single cells in respect of a presented pattern 
consists of nuclei detection, pattern recognition and data analysis.
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image analysis, suitable microscopic techniques are crucial. 
Studies of multivariate features use mainly fluorescence 
microscopy in complex biology systems. High-resolution 
microscopy methods are commonly used in research for 
the analysis of the spatial distribution and co-localization of 
DSBs (71). Methods include stimulated emission depletion 
(STED), ground-state depletion microscopy followed 
by individual molecule return (GSDIM) and structured 
illumination microscopy (SIM). Using improved confocal 
microscopy, Britton et al. reported that Ku70/Ku80 foci 
are smaller than γH2AX analogues, which indicates that 
Ku70/Ku80-induced foci would constitute more accurate 
biomarkers of DSB localization (75).

Confocal laser scanning microscopy is still used extensively 
and remains a standard approach for foci detection (21). 
Characteristics of several microscope types are described by 
Ronneberger et al. (76). In particular, mechanistic questions 
on the spatiotemporal aspects and the quantification of 
size or volume and relative three-dimensional distribution 
of a feature (e.g., foci) within individual nuclei can be  
investigated (77). Cells as three-dimensional objects have 
varying nucleus depth, which not only varies between 
different cell lines but also between individual cells. This 
has to be taken into account for robust analysis. Different 
approaches may also be needed for analysis of adherent 
compared to suspended cells. The latter may require more 
z-stacks compared to adherent cells. Vasireddy and colleagues 
demonstrated a method for detection and quantification 
of γH2AX foci in non-adherent cells, with special focus on 
the co-localization of γH2AX foci with other epigenetic 
markers. Their analysis used bioimage software for detection 
and quantification of foci as well for the creation of three-
dimensional foci distribution maps from z-stack images (78).

During the analysis, the influence of the hardware 
components on the analysis quality must be taken into 
account. Microscopy experts should be involved to 
ensure that an optimal image quality is achieved. High 
magnifications and low aperture values lead to incorrect 
assignments of focusing to several z-stacks and thus to 
poor data quality. As a result, the total number of foci in a 
sample may be overestimated. Confocal laser microscopy 
is a method that reduces such problems because signals 
outside a defined z-stack are treated as fuzzy signals. The 
Nyquist theorem is a method of roughly estimating the 
number of z-stacks required (79). Standard fluorescence 
microscopy is still the dominant for foci analysis since 
confocal microscopes are expensive and thus not ubiquitous 
available, especially for small research teams.

Cell models to study DNA double-strand breaks

Different human cell lines and types are used as in vitro 
models to study individual differences and cell type-
specific reactions of DDR. For example, peripheral blood 
mononuclear cells (PBMCs) are commonly used as in vitro  
model due to the broad availability of these cells in clinical 
research (80). PBMCs isolated from female patients 
suffering from high-grade serous ovarian cancer were used 
to investigate the concurrent induction of γH2AX and 
MRE11 to ascertain homologous recombination deficiency. 
In this case, biomarkers were stained with fluorophore-
conjugated antibodies and subsequently analyzed by high-
throughput flow-cytometry (81). However, the question 
if PBMCs as in vitro model accurately resemble the dose-
effect-relations expected in vivo remains to be answered (9).

The automated analysis of such cell models requires 
profound knowledge about the cell morphology:
	Variable cell shapes and dynamic morphological 

features require an individual adoption and validation 
of pattern recognition algorithms for each cell line. 
Böcker and Iliakis investigated three cell lines (HeLa, 
A549 and MRC5) and demonstrated that they 
exhibited varying nuclear morphology and γH2AX 
foci size. Thus, HeLa cell nuclei were nearly spherical 
and smaller in average, while A549 and MRC5 cells 
had a much flatter nucleus. Conversely, the focus size 
was larger in HeLa and MRC5 cells than in A549 
cells (21). During our analysis we noted that some 
software discussed in the later sections failed to report 
meaningful results if this was not adjusted initially.

	Malignant cells have higher DSB base-line levels that 
may even vary under differing culture conditions. 
Senescent cells show normal numbers of endogenous 
γH2AX foci irrespective of origin (82). Studies listed 
in Table 1 point to cell lines where DSBs were induced.

Open source software packages for immunofluorescence 
pattern evaluation and foci quantification

For this review, peer-reviewed open source software 
packages were considered to provide an overview of ready-
to-use software for automated immunofluorescence pattern 
evaluation and quantification of DNA damage responses 
(e.g., DSBs). Our literature research showed that ImageJ, 
CellProfiler, Icy, FociCounter and the ImageJ plug-in 
FindFoci are among the most frequently cited open source 
software in the year 2018. They are designed to process 
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high quality images or z-stacks obtained by either high-
end confocal laser scanning microscopy or wide-angle 
fluorescence microscopy. The latter usually have an increased 
background signal due to a less well-defined focal plane (61).

Open source software packages have several benefits over 
closed source software such as:
	An accessible source code that can be modified to 

specific needs;
	A transparent and reproducible result generation 

process;
	Free availability for the scientific community.
All software is based on a similar workflow (Figure 2) (83).  

They represent research tools with great potential for 
diagnostic and research applications and allow to tailor the 
program to specific tasks (e.g., machine learning) (63,84). 
Necessary image processing tasks are often performed based 
on ImageJ (89). Different design approaches are available:
	Macros [e.g., ImageJ (85,86), Focinator (87,88), BIC 

Macro Toolkit (90)];
	Plug-ins [e.g., Icy (91), ImageJ (85,86)] for available 

software;
	Pipelines [e.g., CellProfiler (89,92,93)], which are 

based on the use of freely available or commercial 
software frameworks such as ImageJ and NIH Image;

	Standalone software like FociCounter (22) or ilastik (94).

Open source digital image analysis software 
packages

Due to the complexity of the software packages, it is 
not feasible to discuss all details of the operation. The 

literature cited in Table 2 points to quantification of results 
and the usability of the software. While CellProfiler, Icy 
and ImageJ are able to analyze large image sets and output 
detailed results (e.g., area, intensity) in different file 
formats, the standalone software FociCounter is focused 
on the analysis of single cells.

ImageJ—Java-based image processing program

ImageJ stands out by a stable program interface with the 
ability for macro- or plug-in based expansion. A commonly 
used distribution of ImageJ is Fiji (recursive acronym 
for Fiji Is Just ImageJ), which bundles ImageJ with many 
useful plug-ins. Repetitive tasks such as multistep image 
processing via color balance adjustment, histogram 
equalization, blurring or thresholding can be automated 
via custom-built macros. An advantage of ImageJ is the 
availability of numerous plug-ins for a variety of analysis 
tasks. The plug-ins are generally well documented and 
are modifiable to adapt them for different analysis needs. 
Furthermore, it has the ability for batch processing, which 
allows the analysis of a large amount of images semi-
automatically (85,99). To investigate the inner workings 
of plug-ins and macros, ImageJ also allows a step-by-step 
analysis. Since it is presumably one of the most used tools 
for digital image analysis, we show a brief outline for the 
analysis:

(I)	 Digital image pre-processing can be performed to 
minimize noise by different blurring methods, such 
as Box or Gaussian blur. However, blurring always 
results in loss of contrast, which might negatively 

Table 1 Representative studies for DSB assessment using differing cellular systems

In vitro model Origin DSB inducer Assessed biomarker Assay technique Type Ref.

CaCo2 Intestine (colon) Acetamiprid γH2AX IF, CA m (83)

HEK293 Kidney Irradiation γH2AX, 53BP1, MRE11, BRCA1, NFBD1 IF, FACS m (84)

HeLa Uterus Irradiation γH2AX, 53BP1 IF m, s (30)

HEp-2 Larynx Arecoline γH2AX, ATM, p53, Chk1/2 IF, WB, HCR m (85)

HepG2 Liver Etoposide γH2AX FACS s (86)

LoVo Intestine (colon) NU7441, Irradiation, 
Etoposide, Doxorubicin

γH2AX FACS s (87)

PBMCs Blood (venous) Etoposide γH2AX IF, WB a (69)

Irradiation γH2AX, 53BP1 IF m (88)

DSB, double-strand break; a, automatic; CA, comet assay; HCR, host cell reactivation assay; IF, immunofluorescence; m, manual (=optical); 
PBMCs, peripheral blood mononuclear cells; s, semi-automatic; WB, western blot.
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influence further processing steps.
(II)	 Subsequently, the images can be segmented by a 

threshold to facilitate recognition and classification 
of different objects (Region of Interests).

(III)	 After watershed transformation, the number of 
detected objects can be determined using the 
option “Analyze Particles”.

(IV)	 Furthermore, the determination of foci number can 
be performed by the “FindMaxima” option using 
spot intensity (Figure 3).

The image processing program ImageJ/Fiji along 
with its macros and plug-ins has been used to solve many 
biological questions based on accurate and reproducible 
image analysis (85). User-friendliness and the availability 
of macros for automation of standard functions make 
ImageJ/Fiji  a suitable choice for high-throughput 
image analysis. In many cases, advanced knowledge of 
programming languages is not required. However, when it 
comes to high-quality analysis routines (e.g., compensation 
for inhomogeneous illumination, sharpness) advanced 
programming skills and deep knowledge of digital image 
processing is indispensable.

FindFoci, FoCo and Focinator—focus detection algorithms 
and automated high-throughput foci counting

FindFoci is an ImageJ plug-in for an automated foci 
recognition, which is based on ImageJ’s FindMaxima 
operation. Detecting and counting of objects via size 
and intensity is based on thresholding and optional pre-
processing by Gaussian blur. The user-friendly interface, 
comprehensive documentations and additional plug-ins 
like the FindFoci Optimizer or FindFoci Batch facilitate 
reproducible foci quantification. Parameters can be adjusted 
such as the thresholding method (e.g., Otsu’s method) or 
the minimal ROI size. The options of the FindFoci plug-in 
are extensively documented in an online manual (96).

Other plug-ins and macros like Focinator or BIC macro 
toolkit can also be employed for foci counting (87,90). 
The developers of Focinator argued that most of the foci 
counting software available lacks a graphical user interface 
(GUI) (87). Indeed, this is an obstacle for many users to 
adopt software in their scientific work process, because 
the operation of software from the command-line is rather 
complicated for most users to achieve their goals. But not 

Figure 2 Workflow for image processing and image analysis for cell and pattern recognition. High resolution and multispectral images 
are the basis for a semi-automatic image analysis, which was recorded by fluorescence microscopy automatically. Then the user can set the 
methods and parameters for each biological question to desire the sought information.

Automatic image acquisition  
(included dynamic autofocusing, standard exposure)

Semi-automatic image analysis & data preprocessing  
(included e.g., adaptation of parameter, subtract background, threshold)

Spot detection and foci identification 
(included counting)

Information extraction  
(e.g., foci quantification)

Cell detection  
(included counting)

Pattern recognition & classification 
(e.g., different associated biomarker)

Segmentation
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only pure ImageJ-based programs were designed: Lapytsko 
et al. developed a simple and robust quantification algorithm 
for nuclear foci, called FoCo which is a Matlab program 
using ImageJ for image processing. It can be used even for 
low signal to noise ratios and densely distributed foci (61).

AutoFoci—automated high-throughput foci detection

Lengert and colleagues implemented an automated focus 
counting method called AutoFoci to count γH2AX and 
53BP1 foci in low-dose irradiated cells (95). AutoFoci 
is a bioimage informatics tool based on Java/ImageJ for 
high-throughput analysis of cell images (Figure 4). It 
records various object properties such as co-localizing 
γH2AX/53BP1 foci, their intensity, size and sharpness. 
According to the authors, it is suitable for many biological 
screening approaches. Depending on the resolution of the 
cell images, AutoFoci requires user-defined input parameters 
for reliable automated analysis. For their method, the 

authors combined a scanning fluorescence microscope 
with an autofocus function (~50 cells/10×10 fields).  
Using the μManager software (100), the cells in each field 
in the blue channel (DAPI staining) were detected and 
recorded in a z-stack of five images per DNA damage 
marker. The CellECT software (101) was used to identify 
individual cell nuclei and generate individual images 
thereof. The image with the highest contrast was selected 
from the z-stack for further analysis and foci counting. 
With this approach the background signals should be 
reduced in comparison to a maximum intensity projection. 
In addition, algorithms were implemented to identify 
all S- and G2-phase cells, potentially dying cells, and to 
exclude them from further analysis. Included in AutoFoci 
are basic statistical analysis functions. For example, the 
focus numbers per cell are graphically compared with 
the theoretical Poisson distribution. In addition, they are 
compared by Kullback-Leibler (KL) divergence and the 
sum of the squared residuals respectively. The handling of 

Table 2 Overview about reviewed software packages and their ability for pattern analysis based on microscope images

Software 
Packages

Program details

ODP License
Advanced data 
exchange/data 

output
Throughput

Programming 
language

Usability Microscopy
Associated 
biomarker

Ref.

CellProfiler 10/2006 GPL v2 MATLAB (.mat), 
HDF5 (.h5), 
EXCEL sheets

Multiple cells 
simultaneously

Python Advanced Fluorescence Yes (95) 

FociCounter 12/2009 GNU GPL – Restricted to 
single cells

Python Novice All No (22) 

Icy 06/2012 GPLv3 MATLAB (.mat), 
HDF5 (.h5), 
EXCEL sheets

Multiple cells 
simultaneously

Java Advanced All Yes (96) 

ImageJ and 
ImageJ2/Fiji

06/2012 PD Internal data table Multiple cells 
simultaneously

Java Advanced All Yes (89,92,97)

ImageJ plug-ins specialized in Foci quantification

AutoFoci 11/2018 GPL v3 Images with 
marked foci

Multiple cells 
simultaneously

Java Advanced All Yes** (98)

FindFoci 12/2014 GPL v3 Mask images and 
tables

Multiple cells 
simultaneously

Java Advanced All Yes** (63) 

Focinator 08/2015 PD – Multiple cells 
simultaneously

Java Advanced All Yes** (93,94)

FoCo 11/2015 GPL v2 Data table, 
marked foci

Multiple cells 
simultaneously

Matlab, Java Advanced CF, WF NA (61)

**, via implemented ImageJ. CF, confocal fluorescent laser scanning microscope; GPL, GNU General Public License; HDF, hierarchical 
data format; NA, not available; OPD, online publication date; PD, public-domain; WF, wide-field fluorescent microscope.



Journal of Laboratory and Precision Medicine, 2019 Page 9 of 27

© Journal of Laboratory and Precision Medicine. All rights reserved. J Lab Precis Med 2019;4:21 | http://dx.doi.org/10.21037/jlpm.2019.04.05

the software is intuitive and well documented.

Icy—an open source bioimage informatics platform for 
reproducible research

Icy is an open platform with a comprehensive graphical interface 
for extended reproducible research in bioimage informatics. It is 
a free and user-oriented solution that non-expert users can run 
to change workflows according to their needs through graphical 
programming. This is supported by a community website (http://
icy.bioimageanalysis.org/) that provides a centralized and open-
access public repository to contribute and share plug-ins and 
workflows, and facilitates the development and usage of a variety 
of image processing algorithms (91,102).

Icy offers several plug-ins for different biological issues, 
protocols and scripts for adaptation of desired program 
settings. Tutorials and a suitable documentation at the 
Icy homepage facilitate the usage of plug-ins, scripts or 
protocols. Furthermore, Icy can be connected to Matlab and 
provides a native ImageJ integration. For the recognition 
and quantification of objects like nuclei or foci, segmentation 
methods and spot detection are available. Manual counting 
can also be performed via a plug-in. Thus, it is possible 
with the integrated plug-in HK Means to identify the 
nuclei by segmentation using user-defined minimum and 
maximum sizes of detected objects. This is also very useful 
to ascertain clustered objects in fluorescence microscopy. 
The output of the nuclei position makes it possible 

Figure 3 Comparison of implemented ImageJ commands with the ImageJ plug-in FindFoci with respect to nuclei segmentation and foci 
detection. (A) By usage of following implemented ImageJ commands it is possible to segment and detect objects without plug-ins: Gaussian 
Blur → Substract Background → Threshold → Watershed → Analyze Particles. As results you will get in addition to the number of counted 
objects for example also their area and their average size shown at the screenshot top left under the ImageJ/Fiji bar. In contrast, for foci 
detection only the FindMaxima command is needed, which is suitable for fast detection of punctiform objects by adjusting the parameters 
shown in the picture bottom left. (B) The ImageJ plug-in FindFoci enables the automated recognition of (punctiform) objects. By the 
integrated special features FindFoci Optimizer and FindFoci Batch it is possible to analyze numerous images under optimal settings. In 
addition to the number of segmented objects and focal events, for example the size and the respective position you get. Furthermore, the 
comparison of both approaches showed that both recognize the objects equally and in the same dimension. The important details are framed 
in red.
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to determine the required ROI for the following foci 
detection. For foci detection, the Spot Detector tool can  
be used to recognize foci dependent on their area (Figure 5).

CellProfiler—user-friendly next-generation bioimage 
processing

CellProfiler is an open source software to quantitatively 
measure phenotypes. The software has a flexible, modular 
design with a GUI. Sophisticated image analysis pipelines can 
be created for processing of large cellular image data to address 
complex biological questions even for non-programmers using 
CellProfiler and CellProfiler Analyst (Figure 6) (89,97). The 
release of CellProfiler 3.0 included improved support for both 
whole-volume and plane-wise analysis of three-dimensional 
image z-stacks (92). Custom pipelines can be created from 
modules that encapsulate e.g., image processing algorithms 
or object detection analysis (89,102). Functioning analysis 
pipelines are available on the developers’ homepage (http://
cellprofiler.org/) as building blocks for customized pipelines.

As of completion of this review, there was no specialized 
module for foci detection. The Speckle Counting pipeline 
can be used instead. This advanced pipeline enables to 
identify smaller objects (foci) within larger objects (nuclei). 
Relationships between the two can be established as well as 
per-object aggregate measurements. Thus, nuclei and their 
contained foci can be characterized simultaneously (Figure 7).

FociCounter—quantitative and qualitative analysis of 
γH2AX foci

FociCounter is a simple standalone program with a user-
friendly GUI to obtain an overview about foci numbers. 
FociCounter is suitable for the foci determination 
within a cell ,  because the foci  detection depends 
on brightness differences between the foci and the 
background (e.g., brightness of cytoplasm or nuclei) 
within a selected ROI (Figure 8). FociCounter as a semi-
automatic program requires manual input for nuclei 
detection. Semi-automated computational tools with  

Figure 4 AutoFoci’s user interface is organized in tabs. The background shows the main window. Using this, the directory with the single 
images can be selected and analyzed. To the left the window displaying the progress of the analysis can be seen. In this example 37 images 
were selected from the AutoFoci sample dataset. On the right is the dialog for setting the focus threshold including interactive histograms 
and the Poisson distribution of foci.
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Figure 5 The open bioimage informatics platform Icy combines all operations necessary for image analysis in research through an 
interactive user interface. (A) Integrated plug-ins like HK-Means ease object recognition and segmentation. Furthermore, Icy is extensible 
and offers a variety of alternative operations (e.g., Thresholder, Manual Counting). (B) The integrated plug-in Spot Detector allows the 
detection of punctiform objects according their pixel size defined areas. The ability of batch processing facilitates the analysis and generation 
of large amount of data.
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parameterized algorithms are most frequently presented in 
the literature (63). FociCounter is fairly minimalistic since 
it lacks features like automatic nuclei detection and the 
analysis of overlapping nuclei (44).

Commonly used open source programming languages with 
bioimage informatics capabilities

Programming languages, such as Python or R, are tools 

to build customized bioimage analysis pipelines. Both are 
widely adapted for scientific programming and data analysis. 
Their broad applicability and mathematical abilities makes 
them useful for big data mining, statistics and visualization 
(98). GUIs and integrated development environments (IDE) 
for image processing tasks have also been developed. They 
cover different standard functions such as thresholding, 
segmentation and different transformations. Bio7 (103) is a 
GUI and IDE which wraps the image analysis functionality 

Figure 6 CellProfiler designed for high-throughput cell image analysis allows to address a variety of biological questions by using of 
building blocks for pipelines. The pipeline Speckle Counting enables the identification of focal events within larger objects. Even the detection 
of foci originating from several distinct biomarkers can be performed in parallel. Besides the number of objects and focal events (red framed), 
also the size, intensity and the assignment of the foci to the recognized objects are shown as result. The success of the image analysis largely 
depends on chosen parameters such as threshold and object size (red circled). 
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of ImageJ and R. Single R packages for image analysis 
include EBImage (104) raster (105) and ripa (106), imager 
(107) and dcemir (108). Similarly, image processing can be 
performed in Python via scikit-image (109), OpenCV (110) 
or the Python Imaging Library (PIL) (111).

An example for the application Python for custom 
processing and analysis of immunofluorescence images is 
shown in Figure 9 (112). Thereby, nuclei were detected and 
the average intensity of both, the red and green signal inside 
the nucleus, was determined.

Challenges of bioimage informatics for the 
analysis of DNA damage

There are several challenges to humans that can be handled 
by bioimage informatics:
	The detection of punctiform objects in the nuclei 

as DSBs is demanding. The clustering of genes to 
nuclear bodies like PML bodies, speckles or Cajal 
bodies also cause foci formation (113). Furthermore, it 
is reported that PML bodies can also co-localize with 
γH2AX in DDR (114).

Figure 7 Pattern recognition in foci quantification and pattern classification. High resolution and multispectral images of HEp2 (ANA) cells 
recorded by fluorescence microscopy. High resolution and multispectral images were used for semi-automatic image analysis. Quantification 
of punctiform objects and cell recognition via segmentation were performed using CellProfiler. Currently, four foci staining patterns (punctual 
events) can be distinguished by their form and characteristics: multiple nuclear dots, nucleolar, speckled and centromeric. Background effects 
in nuclei and their vicinity can point to unspecific binding and pitfalls.
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	Manual counting of cells that contain dozens of foci 
per cell (which may even overlap) and concomitant 
assessment of cellular structures is unsustainable as it 
is prone to inaccuracies and biases by the investigator 
and also yields low throughput (21,61). It also depends 
on the perception of the operator which may vary 
between different operators (71). This approach only 
allows a statement about the quantity of γH2AX 
foci for the specific image scenario rather than a 
generalized statement, because every image has to 
be individually adjusted for variations in focus and 
illumination (22,41,115). This was the case for all 
reviewed software.

	Dense and overlapping foci are quantifiable as long as 
the fluorescence signal is unsaturated and dedicated 
algorithms are used as described in (71).

	γH2AX/53BP1 foci and foci streaks may differ in 
their morphology, which requires more sophisticated 
algorithms (116).

	A crucial point is the robustness of chosen parameters 
for identification of nuclei and foci, which is strongly 
affected in the process of image acquisition and 
analysis (76).

	The variation in intensity of staining and the visual 
fusion of nuclear structures make it difficult to obtain 
an exact statement about the severity of the DNA 
damage by γH2AX foci analysis (76).

	Overlay methods help to generate visual estimates of 
co-localization events in two-dimensional images, but 
cannot reflect the three-dimensional nature of the 
biological sample (45).

	Confounders influencing the cell and foci detection, 
such as exposure time, the focus plane, cell debris and 
background signals.

	The direct estimation of the object density in an 
image without performing segmentation or object 
detection is difficult. This was realized elegantly 
in the software program ilastik, which represents 
an approach for counting blob-like overlapping 
objects with similar appearance (e.g., size, intensity,  
texture) (94). Overlapping foci can also be analyzed in 
more detail by 3D imaging. The vast amount of data 
generated by medical informatics and other research 
disciplines is an increasing challenge nowadays (98).  
The analysis of this so-called Big Data offers new 
research opportunities and holds the promise of 

Figure 8 FociCounter is a simple and user-friendly public-domain software suitable for single cell analysis (red framed). Based on difference 
in brightness and the object size, this standalone program can identify punctiform objects within single region of interest. But the analysis of 
several objects is difficult if there are differences in brightness in the image itself.

Single cell analysis
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Figure 9 Processing images and result plot of an exemplary image analysis using Python and scikit-image. Above: code snippet for the 
performed processing steps. Middle: images showing the results of different processing steps for the detection and segmentation of nuclei. 
Below: plot showing the calculated average intensities for both the red and green signal for each detected nucleus.
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improved quality of healthcare. The increasing 
volume of image data requires grid architectures to 
store, retrieve and process images of various formats 
among various entities (e.g., research units, hospitals) 
(108,117-119). Herein, efficient and interactive 
systems for the visualization of large data sets are 
needed. ImageJS is a browser-based computational 
ecosystem for an open, collaborative, computational 
image analysis (e.g., segmentation, feature extraction 
and filtering) that are both self-sustained and user 
driven (120). BigDataViewer was developed as a Fiji 
plug-in for interactive visualization of large 3D image 
data sets (121).

Digital image analysis and dedicated software packages  
allow the automated recognition of healthy and pathological 
cell structures and disease-related patterns (e.g., autoimmune 
diseases) and might create the basis for introduction of 
DDR markers into clinical routine. One way to improve 
the consistency of analysis in different images may be the 
training of supervised machine learning algorithms with 
user-labeled images (63,84). None of the software included 
such functionality.

Processing of γH2AX foci counts and recommendations

The following section aims to give recommendation for 
working with image data of DDR.

Errors (e.g., uneven illumination, blurriness, noise) 
are introduced during the measurement by microscope 
hardware (e.g., CCD camera), the specimen and data 
processing (46,122). Moreover, the intensity value of a pixel 
is not necessarily related to the number of fluorophores 
(mediated by a detector molecule like fluorescent 
antibodies) present since self-quenching, focusing, 
registration accuracy, bleed-through, auto-fluorescence, 
photo-bleaching and blinking effects disturb the signal 
(46,123-125). Additionally, the hardware-limited image 
resolution and the pixel aspect ratio do not allow for a one 
pixel per fluorophore ratio. It is better to assume that a 
single pixel represents the signal of multiple fluorophores.
	Differences such as staining intensity, small changes of 

sizes (e.g., nucleus size) or features like the texture are 
hard to detect by the human eye (89). Consequently, 
it is important to build models which describe rare 
repair foci events and to understand the corresponding 
DDR mechanisms. The latter requires large numbers 
of cells to ascertain such rare events, which may 

represent a subpopulation within a sample (52,89).
	Differences in foci morphology can be addressed 

by different methods.  One example is  High-
content image-based cytometry (HCIC), which is a 
method to accurately quantify cellular characteristics 
(52,126). HCIC was used by Jezkova et al. to analyze 
γH2AX/53BP1 foci and foci streaks induced by high-
LET boron and neon ions. They found that foci 
differed both in sizes and shapes depending on the 
LET radiation type (116). Another example is the 
usage of digital cameras in combination with confocal 
microscopes with deconvolution software enabled 
3D image generation to get valuable information  
about foci.

	The number of cells analyzed is important for a well-
founded statistical analysis. Although low cell counts 
reduce the amount of work required for manual 
counting, the cell count determines the accuracy of 
the assay. None of the reviewed software packages 
proposed criteria for this and thus, the definition of 
an adequate number of cells to analyze is the user’s 
responsibility. Therefore, the foci number may vary 
and could range from 50 to 1,000 (48). An analysis 
of 100 representative cells per condition could be 
suffice to draw statistically valid conclusions. We are 
not aware of a study that addressed this question. 
Intra- and inter-laboratory studies showed that huge 
differences in foci yields were obtained for the same 
samples. This was in part explained by variations 
in foci loss during shipment of blood samples or by 
variations in immunofluorescence staining (24).

	Over-dispersion, which means an excess of foci 
negative cells, is a possible scenario. In case of low cell 
numbers, over-dispersion cannot be observed.

	Since the foci number depends on variable properties 
like the foci fluorescence intensity (number of 
accumulated γH2AX), foci diameter, foci position, 
overlapping nuclei, background fluorescence and the 
occurrence of artifacts, automated focusing appears to 
be a prerequisite for robust and reproducible analysis 
pipelines.

	The lateral and z-axis resolution should be configured 
in a manner which suffices for analysis. Particularly 
the evaluation of an adequate z-axis resolution and 
a high enough lateral resolution for foci detection 
is demanding. It is important that an algorithm is 
capable of separating foci that are in close proximity 
or in contact with each other. Significant overlap of 
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foci is likely with increasing dose of the DSB inducing 
agent by overall increasing the amount and thus 
density of foci (21).

	The standardization of γH2AX foci counting 
with meaningful biological controls is an essential 
requirement for the introduction into routine 
medicine (24,127).

	Bystander effects, technical influences during the 
measurement (e.g., noise, blurriness, inhomogeneous 
illumination) and biological variability require the 
assessment of hundreds of cells to exclude false-
positive results. Several technical approaches have been 
introduced to perform an automatized image capturing  
and image quality management (69,128,129).

	γH2AX foci can be induced in adjacent cells, called 
bystander cells, by DNA damage through cell 
communication (130). Recognition and detection of 
foci are also used to investigate cellular architecture by 
fluorescence in-situ hybridization (FISH). Such foci 
are referred as FISH foci.

	Besides the foci data, it is important to analyze 
additional parameters. It was for example reported 
that pericentrin, an integral component of the  
centrosome, can be used to distinguish both the 
number of γ-H2AX foci per cell, and the cell cycle 
phase in a single assay (34).

	Different approaches were proposed to address 
the problem of overlapping foci (21). To segment 
overlapping foci, it was proposed to treat them as 
entities with a sufficient distance to clearly separate 
them (46). Several methods have been proposed 
to address uneven illumination, which is a serious 
challenge during image analysis. The same holds true 
for uneven illumination in light sheet microscopy 
(LSM) images (131,132). Uddin et al. presented 
a modified radiative transfer theory approach as 
alternative to deconvolution- or model-based restoration. 
They showed that the image restoration eliminated 
the contrast degradation problem of LSM (133). From 
the reviewed software only CellProfiler offered several 
methods to compensate uneven illumination (89).

Analysis of spatiotemporal foci relations and rejoining 
kinetics

Most studies appear to focus on the analysis of foci 
counts and co-localizations of DDR biomarkers. Direct 
visualization of the three-dimensional distribution of foci 

in the nucleus can additionally provide insight in the spatial 
organization of genome associated proteins and their 
association with cellular processes (e.g., gene expression) 
(34,134). The analysis of spatiotemporal foci relations and 
rejoining kinetics is important to understand DDR kinetics. 
For this task, different assays and software were developed 
accordingly (38,39,115,128,135,136). Studies in mammalian 
cells have suggested that both the yield and the spatial 
distribution of DSBs are influenced by various factors like 
the radiation quality (130).

An in the year 2005 by Desai et al. performed qualitative 
analysis provided insights into DNA damage processing 
kinetics for high charge and energy ions (134). This 
approach was used 2012 by Mok and Henderson to show 
that γH2AX-MDC1-53BP1 and RNF8-RNF168-BRCA1-A 
complexes were spatially independent (79). This provides 
important information about the spatial distribution of 
DSBs which needs to be considered in precision medicine.

Software tools, which are capable to analyze such data, 
might be also convenient for use in other fields of research. 
Genome editing by either zinc-finger nucleases or the 
CRISPR/Cas9 system also results in DSBs (137,138). Here, 
knowledge about spatial relationship of DSBs and known 
associated proteins and cell structures is certainly useful 
(Figure 10).

Example: PA28γ as a biomarker for pathophysiological 

conditions—difficulties and opportunities

The following paragraph describes challenges that a one 
might face during the analysis of image data. First, the 
biomedical hypothesis is explained and then linked to 
selected steps of analysis by bioimage informatics.

Proteasome activator PA28γ has initially been discovered 
as an autoantigen in systemic lupus erythematosus (SLE) 
(139,140) and has recently attracted attention as a putative 
biomarker in cancer (141,142). As for other biomarkers, the 
dynamics of expression, localization, either sub-cellularly or 
extra-cellularly, as well as the elicitation of autoantibodies 
derived against this protein, promotes the idea of using it 
as indicator of pathophysiological conditions or control 
parameter for monitoring of therapies. A proteomic 
approach revealed increased PA28γ expression in colorectal 
cancer (141). Several more recent studies indicated 
elevated PA28γ protein levels as a hallmark of epithelial or 
mesenchymal cancers (141,143-146). Since PA28γ localizes 
to sites of DSB and DDR, imaging approaches correlating 
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PA28γ levels with therapeutic approaches inducing 
genotoxic damage might be of particular interest in the 
future.

The putative value of PA28γ as a bio-or-pathomarker was 
evaluated in sera of patients suffering from auto-immune 
diseases or cancer. They were examined for elevated levels 
of the PA28γ antigen and auto-antibodies. The parallel 
assessment of PA28γ antigen with a sandwich ELISA and 
autoantibodies with a microbead assay allowed assessing 
the putative competition of the ELISA antibody (detection 
limit 3 ng/mL) with autoantibodies, correlating with the 
antigen levels in RA sera. Intriguingly, high levels and 
diversity of autoantibodies may hamper quantification of 
amount of the corresponding PA28γ antigen. Such technical 

hindrances can be avoided in immunofluorescence imaging 
approaches, as discussed later. The design of the ELISA 
study suggests that PA28γ sera levels are elevated in cancer 
and autoimmune diseases. With regard to this antigen and 
the analytical approach, the differentiation between several 
forms of RA and cancer was limited, if not combined with 
other markers in multiparametric approaches. However, 
applied as a marker for surveillance of RA disease activity 
and therapy of rheumatoid arthritis, monitoring of PA28γ 
allowed correlation with therapeutic impact (142).

Monitoring of PA28γ protein or antibody sera levels may 
be of use in certain conditions. The diagnostic potential of 
PA28γ needs further studies. Since the molecular biology 
of PA28γ appears to be more sophisticated, future efforts 

Figure 10 Semi-automatic image analysis and pitfalls. (scale: 50 µm). (A) Composite image of analyzed fluorescence channels. The dotted 
circle marks bystander cells, whilst the arrows exemplary mark unspecific antibody binding. (B) The singular fluorescence channels. 
HEK293 cells were transfected with the CRISPR/Cas9-mediated plasmid px458-SFPQ112 (Splicing factor Proline/Glutamine-Rich) by the 
PolyFect® reagent (Qiagen). The plasmid px458-SFPQ112 contains a gene for Cas9, sgRNA and GFP. Multispectral images were taken by 
fluorescence microscopy after transfection of HEK293 (blue: nuclei) with the plasmid px458-SFPQ112 by PolyFect®, which confers the cells 
the ability to express GFP (green), the protein Cas9 (yellow) and the associated sgRNA for genome editing. Natural and by genome editing 
induced γH2AX foci appear as small red spots. Merged image and single fluorescence channels show common pitfalls and features. In the 
cytoplasmic area between the cells slightly unspecific background coloring can occur due to e.g., high illuminance, unspecific binding of 
antibodies (arrows). Surface particles on the slide can act as fluorophores and an excess of used antibody increases the likelihood of unspecific 
binding. Furthermore, each cell can transfer features by cell communication (bystander cells; dotted circle). Moreover, the Cas9 nuclease 
could have an impact on detection of false-positive results.
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should integrate such knowledge in imaging analysis on 
the subcellular distribution of post-translationally modified 
variants. PA28γ is described to be mainly localized in 
the nucleus. It can be translocated into the cytosol after 
SUMOylation at multiple sites (147). Interestingly, PA28γ 
is involved in multiple cellular processes related to cancer 
development such as apoptosis (148), cell cycle regulation, 
or the DNA damage response DDR (149,150). The 
functional state of PA28γ appears to be regulated post-
translationally. Checkpoint kinase Chk2 phosphorylates 
PA28γ at serine 247, if switched on due to DNA damage 
PA28γ as an ATM phosphorylation target is recruited to 
DNA damage sites to enable the rapid accumulation of 
proteasomes at these sites. PA28γ-depended recruitment 
of  20S proteasomes has  been shown by l ive  ce l l 
imaging (151,152). PA28γ depletion enhanced the focal 
concentration of some proteins of the DNA replication 
apparatus at DNA damage sites. Contrarily, early focal 
dynamics represented by initial appearance of γH2AX 
seems to be independent of the presence of PA28γ, either 
indicating that PA28γ is involved in DDR protein dynamics 
at later states or that γH2AX levels are not affected by 
PA28γ-proteasome complexes.

Thus, PA28γ appears to be an additional biomarker, 
possibly not only for demonstrating sites of DNA damage, 
but for monitoring protein dynamics of repair at DNA 
damage sites. Several authors suggest that PA28γ plays a role 
in the coordination of the DNA double-strand repair and 
in chromosomal stability (151-153), but multiparametric 
analysis of protein dynamics that DNA damage and repair 
sites has so far not been considered for diagnostic purposes. 
Therefore, we established cellular models with CRISPR/
Cas9-modulated PA28γ protein levels to investigate the role 
of PA28γ in DDR (154).

In Figure 11, a B8 fibroblast cell line overexpressing 
PA28γ (B8γ) has been compared with the B8 vector control 
(B8vc) regarding the subcellular distribution of PA28γ in 
relation to γH2AX after UV-C induction of DNA damage 
and apoptosis (148). In this in vitro we observed that 
PA28γ is preferentially located in the cytoplasm of B8vc 
fibroblasts, whereas overexpressing cells reveal a higher 
nuclear concentration, as well as a shift towards higher 
molecular weight complexes. These observations are 
confirmed by nuclear PA28γ translocation demonstrated 
by microscopic image analysis shown in Figure 11. Future 
studies on the correlations of PA28γ levels with markers 
of DSB foci and protein dynamics in the DDR protein 
signaling network should reveal, if PA28γ levels in cancer 

tissue affect the sensitivity of tissue towards genotoxic 
therapeutic intervention, abundancy of DSBs, kinetics of 
DSB appearance or repair.

Conclusions

Semi-automatic detection and quantification of DSB 
markers uses automatic acquisition of multispectral images 
and analysis by bioimage informatics. Reproducible and 
reliable foci quantification is essential for data interpretation 
and for biological inferences. Therefore, different software 
packages for analysis of multispectral images were surveyed.

For users lacking profound knowledge of bioimage 
informatics, the availability of graphical user interfaces, 
which offer straightforward workflows, is an important 
prerequisite for entering digital image analysis. From our 
experience, all software packages fulfilled these perquisites 
and were eligible for reproducible quantification. When 
we handed out the software to inexperienced individuals 
[biotechnologists at bachelor level (N=10)], we received the 
(subjective, unrepresentative) feedback that the software was 
intuitive. CellProfiler and Icy were reported to provide the 
best user experience after a training phase. Lapytsko et al. 
found in their particular experimental setting (“time series 
of γ-irradiated cells for up to 10 Gy”) that CellProfiler and 
ImageJ have short comings (61). They reported a “poor 
performance on distributed foci”, “poor performance on 
images with low signal/noise ratio”, “poor performance 
on images with varying background” and that the both 
tools are “complicated to use”. We think that users need to 
evaluate software in small pilot studies before starting larger 
studies.

The aforementioned softwares were linked with 
numerous video and text tutorials, which eases their use. 
In general, the documentation was comprehensive for all 
software’s reviewed. More advanced users will appreciate 
the integrated development environments of ImageJ, 
CellProfiler and Icy, which empower them to extend the 
analysis and report generation routines by programming  
in Java.

We noticed that on several occasions’ knowledge of 
image processing termini was beneficial for ImageJ and 
CellProfiler to adjust the settings for successful object 
detection. Therefore, we would like to point the readers 
of this review to the excellent books by Jähne and Burger, 
respectively (65,155).

Most software can recognize and measure patterns and 
phenotypes by dedicated plug-ins [e.g., Icy (91)], macros 
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Figure 11 Cellular distribution of PA28γ upon UV-C stimulation of B8 mouse fibroblasts overexpressing PA28γ. The mouse fibroblast 
cell line B8, stably transfected with pSG5 plasmid vector containing BALB/c-derived full-length murine PA28γ-encoding-cDNA (PSME3 
gene), growing on a 12 well slide, were exposed for 10 s with UV-C (254 nm) and fixed at 30 min post-irradiation. Afterwards, cells were 
permeabilized and co-stained with anti-γH2AX and anti-PA28γ. Finally, the cells were covered with DAPI containing mounting solution and 
analyzed by semi-automatic immunofluorescence microscopy. The localization and distribution of PA28γ from untreated cells is different 
from irradiated cells. Whereas PA28γ is naturally localized in cytoplasm, during DDR PA28γ forms focal aggregates in the nuclei.
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[e.g., ImageJ (85)] or pipelines [e.g., CellProfiler (89)]. 
Semi-automated computational tools with parameterized 
algorithms are most frequently presented in the literature (63). 
CellProfiler uses the concept of pipelines, which are usable 
to analyze cell patterns besides the foci. CellProfiler version 
2.0 and later offers user documentation and a pipeline called 
“Speckle Counting” that is suitable for foci counting. The 
visualization of the location, frequency and in particular the 
co-localization with other biomolecules (e.g., via miRNA, 
FISH) may be a meaningful addition on the phenotypic 
level. In contrast, FociCounter lacks this and other 
features like automatic nuclei detection and segmentation 
of overlapping nuclei. In consequence, the scope of 
FociCounter is limited to the enumeration of foci and 
nuclei. This limits its applicability in precision medicine.

The classification of γH2AX foci is achieved through 
intensity and size analysis of the fluorescent spots. The 
open bioimage informatics platforms Icy and CellProfiler 
were most appropriate in terms of usability and analysis 
robustness. Except for FociCounter, it was possible to 
simultaneously analyze other DSB associated biomarkers 
(e.g., 53BP1, nucleus size).

Conventional approaches use static instructions to obtain 
information from an image. For example, most ImageJ 
plug-ins use intensity thresholding and a given minimal 
size to distinguish foci from the background. As with all 
automatic analysis, there is a trade-off between exact foci 
quantification and throughput. When unsupervised, the 
algorithms identified not all individual nuclei and foci 
and may recognize cell debris as foci in complex images. 
The analysis quality was largely depended on the user-
defined thresholds. Therefore, when used in scientific 
studies, it is important to state this information precisely for 
reproducible research. An alternative approach is machine 
learning, which could be used to build a statistical model 
from the image data. The generated models could further 
be used to make predictions and decisions (156,157). 
Machine learning for example was used for the analysis 
of large datasets and multivariate phenotypic profiling for 
example to determine differing DDR related patterns (126).

After digital image analysis, statistical processing, data 
storage and report generation follows. γH2AX foci are 
discrete punctiform objects that can be quantified by 
counting. Only AutoFoci offered basic statistical analysis 
modules for count data (e.g., Poisson statistics). Most of 
them gave information about the average number of foci 
per cell. This is problematic since many datasets contain 
cells with no foci at all.

Foci signal intensities, their spatial distribution (2D, 3D) 
as well as time-dependent signals can also be quantified by 
certain software (78,79). It is important that researchers 
revise the capabilities of the software intended to be used.

High resolved images are problematic regarding 
deconvolution techniques and complexity of the image. 
In the case of punctiform objects like foci, this complexity 
can cause artificial clustering and over-counting. Reasons 
for the latter are over-labeling and physical cross-linked 
proteins via antibodies (158). Therefore, attention needs to 
be paid to ostensible co-localization of foci (e.g., γH2AX 
and 53BP1).

Regarding the complexity of DNA damage repair 
mechanism, a meaningful definition of what a focus actually 
means in the context of DNA damage needs to be found, 
especially since the functional relevance of foci as well as 
the chain of protein phosphorylation and ubiquitination at 
chromatin level is not fully understood.

Understandably, in the context of a review not all 
available software can be investigated. Nevertheless, we 
hope to provide a good overview of analysis software in 
context of DNA repair foci characterization.
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